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1. Introduction

What is dual-self? Who are those two selves? Why exercising self-
control? Is it necessary? When one reads the title of this chapter, these
might be some of the questions that arise. Dual-self refers to the game
between a long-run self and a sequence of short-run selves within an
individual. Fudenberg and Levine [11] state that each individual has two
selves: the long-run self is a patient self who tries to maximize his total
utility across time; however, the short-run self is made of a sequence
of selves that are impulsive who exist for only a brief time, thus each
of these short-run selves cares only about their immediate experience
and rewards. Therefore self-control must be established in order for the
individual to make decisions that are overall better off for him.

The concept of dual-self is not an invention of this century. Adam
Smith was the first to consider two selves within an individual: the
impartial spectator vs. the passion-driven. Shefrin and Thaler [18] were
the first to systematically and formally treating a two-self economic man.
According to their theory in 1981, at any point in time an individual is
viewed as an organization that consists of a planner and a doer to reflect
the conflict between short-run and long-run preferences. The planner role
is concerned with lifetime utility whereas the doer is completely selfish
or myopic and exists only for one period. The concept of hot/cold states
mentioned in Loewenstein [16] is later extended as a hot/cold model of
addiction in Bernheim and Rangel [3]. The latter model describes that
an individual operates in a cold mode when he considers all alternatives
and contemplates all consequences, and that he gets in a hot decision-
making mode where he always «consumes the substance». Consistently,
Loewenstein and O’Donoghue [17] develop a two-system model in which
a person’s behavior is the outcome of an interaction between affective
system and deliberative system. The former desires immediate gratificati-
on; the latter assesses options with a goal-based perspective and considers
longer-term effects. Ashraf, Camerer and Loewenstein [1] state that «beha-
vior was determined by the struggle between what Smith termed the
”passions” and the ”impartial spectator”».

We adopt the theoretical framework of dual-self established by Fuden-
berg and Levine [2006] not only because the concepts of two-selves used
are consistent with the literature mentioned above, but also the dual-
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self model (DSM) of Fudenberg and Levine [11] provides advancements
to the model with quasi-hyperbolic utility (QHM) done by O’Donoghue
and Rabin. One key difference between DSM and QHM that is worth
noting is that QHM assumes that a conflict of interests exist between
present and future selves while DSM states that both the long-run self
and short-run selves share the same preferences. We believe that the
latter more closely depicts the fact that both the long-run and short-run
selves belong to the same individual.

Our model extends from individual decision-making problems to games
involving strategic situations among multiple players in order to better
capture human behaviors in decision-making process in reality. Our model
reflects two-dimensioned games: one dimension refers to a game played
between a long-run self and short-run selves within the same individual;
the other dimension refers to a game played among players. We believe
that such an extension can help us better understand how individual
makes decisions in reality as human beings constantly interact with each
other.

When discussing multi-period games with strategic interactions, one
may wonder whether our model is any different from the repeated game
with history-dependent strategy (HDSM). There are two key differences
that are worth noting. First, every player in our model is assumed to
be a dual-self individual whereas players in HDSM are assumed to be
one single-self. Second, in our model, given that each of the short-run
selves lives only for one period, they only care about immediate payoffs,
and thus their strategies may not depend on incidences which happened
in the past. However, in HDSM, the decisions made by players at every
stage game are based on the previous outcomes.

In our theoretical model, we follow the same assumptions of DSM
established by Fudenberg and Levine [11]: Assumption of Costly Self-
control assumes that payoff without self-control is higher than that with
self-control; Assumption of Unlimited Self-Control shows that for any
player, for any strategy choice that the player takes, we can always find
an optimal self-control action that maximizes his payoff; and a technical
assumption, Assumption of Continuity. In addition to the assumptions
mentioned above, we introduce Assumption of Independent Self-Control
to our model in order to depict interactions among multiple players.
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This assumption is necessary as our model expands the single-player
decision problem, which is the focus of current literature, to a multi-
player decision problem. This assumption means that a player’s payoff
only depends on his own self-control action and actions of all the players,
and that the other players’ self-control actions have no impact on this
player’s payoff function. Furthermore, it is worth noting that the introduc-
tion of such an assumption makes our model more general and keeps our
conclusion consistent with that of Fudenberg and Levine [11].

In this paper, we use The Monks Story, a famous traditional Chinese
proverb, as an example to illustrate the practicality of our model on
the matters in reality. The Monks Story is typically used in literature
that is related to marketing, human resource, and management aspects.
In those research areas, they are more concerned with possible changes
in players’ behaviors as the number of players increase. Therefore, the
main focus of those studies is on coordination and cooperation issues.
However, in our paper, we look at the Monks Story from a different
perspective: we assume that the number of players does not change over
time and examine how players’ behaviors evolve over time. Our analysis
of this story is focused on how individual player as a dual-self individual
makes decisions when interacting with other players. In order to make
this example more interesting, we analyze the story and compare the
results under three scenarios: history-independent strategy case, history-
dependent strategy case, and dual-self approach. Furthermore, we show
two cases of analysis under the dual-self approach: 1) when the short-run
selves cannot observe the previous outcomes; 2) when the short-run selves
can observe the previous outcomes. We hope our analysis will provide an
interesting perspective for the Monks Story.

This chapter is organized as follows: Section 2 shows the basic model;
Section 3 applies our model to an example The Monks Story; Section 4
is the conclusion and discussion.

2. The Model

We adopt the framework of Fudenberg and Levine [11] and focus on
the infinite-horizon multi-player case.

There are I (2 ≤ I < ∞) players, i = 1, 2, . . . , I, and infinite
number of periods, t = 1, 2, . . .. Player i’s discount factor between any
two consecutive periods is constant and denoted by δi, where δi ∈ [0, 1].
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Each player i is considered a dual-self agent: a sequence of short-run
selves {SRSt

i}∞t=1, each of whom lives only for one period, and a long-
run self LRSi, who lives forever. SRSt

i plays a one-period strategy to
maximize his short-run payoff while alive, and LRSi plays a series of
self-control strategies over time to maximize his long-run payoff.

SRSt
i ’s choice at period t is denoted by st

i, st
i ∈ St

i ⊆ R. We write si =

= (s1
i , s

2
i , . . .), st = (st

1, s
t
2, . . . , s

t
I), and s = (s1, s2, . . . , sI) = (s1, s2, . . .).

For simplicity, we assume St
i = St′

i ∀i ∀t, t′. LRSi’s self-control action
at period t is denoted by rt

i , rt
i ∈ Rt

i ⊆ R. Similarly, we have ri =

= (r1
i , r

2
i , . . .), rt = (rt

1, r
t
2, . . . , r

t
I), and r = (r1, r2, . . . , rI) = (r1, r2, . . .).

We also assume Rt
i = Rt′

i ∀i ∀t, t′.1
A finite history of play at period t, denoted by ht, consists of all

the players’ past actions, ht =

{
(r1, s1, r2, s2, . . . , rt−1, st−1) if t ≥ 2,

∅ if t = 1.

Let {rt} = r1, r2, . . . , rt, and let {st} = s1, s2, . . . , st. Then we have
ht = ({rt−1} , {st−1}) if t ≥ 2.

In general, player i’s lifetime payoff (i.e. the payoff of LRSi) depends
on both all the long-run selves’ self-control choices and all the short-run

selves’ strategies over time, denoted by Ui (r, s) :
I∏

i=1

∞∏
t=1

Rt
i×

I∏
i=1

∞∏
t=1

St
i −→

R. When there is no self control for any player i at any time t, that is
rt
i = 0 ∀i ∀t, player i’s lifetime payoff becomes Ui (0, s), where 0 is the
null vector in RI × R∞.

In general, player i’s period-t payoff (i.e. the payoff of SRSt
i ) depends

on both the past actions and the current actions, denoted by ut
i (ht+1) =

= ut
i (ht, r

t, st) = ut
i ({rt} , {st}) :

I∏
i=1

t∏
τ=1

Rτ
i ×

I∏
i=1

t∏
τ=1

Sτ
i −→ R. When

there is no self control for any player i at any time τ ≤ t, that is rτ
i = 0

∀i ∀τ ≤ t, player i’s period-t payoff becomes ut
i ({0t} , {st}), where 0t

is the null vector in RIt. For simplicity, we assume from now on that a
player’s per-period payoff only depends on the current actions of all the
players, that is,

ut
i

(
rt, st

)
:

I∏
i=1

Rt
i ×

I∏
i=1

St
i −→ R.

1These restrictions Rt
i = Rt′

i ∀i ∀t, t′ and St
i = St′

i ∀i ∀t, t′ are for modeling
convenience only, and they can be relaxed without significant change of the results.
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Under the dual-self framework, it is natural to assume that the lifetime
payoff is time-additive. Thus, player i’s lifetime payoff (i.e. the payoff for
LRSi) is

Ui (r, s) =
∞∑

t=1

δt−1
i ut

i

(
rt, st

)
.

At each period, for every player, his long-run self chooses a self-control
action. Given that, every player’s short-run self plays the specified game
to maximize his utility. The mixed strategies of LRSi at period t are
maps from histories to current self-control actions, σLR,t

i : H −→ ∆Ri.
Denote the set of t-length histories by Ht. A strategy for SRSt

i is a

map σt
i : Ht−1 ×

I∏
i=1

Rt
i −→ ∆Si. We denote the collection of all of

these strategies by σSR
i . The strategy profiles σLR =

(
σLR

1 , . . . , σLR
I

)
and

σSR = (σSR
1 , . . . , σLR

I ) together give rise to probability distributions πt

over histories of length t for every t. Therefore, the lifetime utility function
is given by

Ui

(
σLR,σSR

)
=

∞∑
t=1

δt−1
i

∫

hA
t

ut
i

(
rt (ht) , st (ht)

)
dπt (ht) .

Now we impose some assumptions on the payoff functions. For simplicity,
we omit the superscript t for all the notations. For example, all the payoff
functions in this section are one-period payoff functions.

Assumption 2.1 (Costly Self-Control). For any player i, for any si, r−i,
s−i, if ri 6= 0, then ui (ri, r−i,si, s−i) < ui (0, r−i, si, s−i).

Assumption 2.2 (Unlimited Self-Control). For any player i, for any
si, r−i, s−i, there exists ri, such that for any s′i, ui (ri, r−i,s

′
i, s−i) ≤

≤ ui (ri, r−i,si, s−i).

Assumption 2.3 (Independent Self-Control). For any player i, for any
ri, si, s−i, for any r−i, ui (ri, r−i,si, s−i) = ui (ri,0,si, s−i).

Assumptions 2.1 and 2.2 are borrowed from Fudenberg and Levine
[11] whereas Assumption 2.3 was first introduced in Wang and Zheng [19].
As the key difference between our model and Fudenberg and Levine’s
model, Assumption 2.3 describes how one player’s self-control action
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affects other players’ payoffs, and hence makes it possible to extend the
analysis of single-agent decision-making problems to multi-player games
of strategic interactions in the context of self-control.

Definition 2.1 (Self-Control Cost). Given any short-run selves’ strategy
choice profile s, let Ri (s) = {ri ∈ Ri|ui (ri,0,si, s−i) ≥ ui (ri,0, . . . , s−i)},
then player i’s self-control cost is defined as

Ci (s) = Ci (si, s−i) ≡ ui (0, s)− sup
ri∈Ri(s)

ui (ri,0, s) .

For detailed discussions regarding the assumptions above, please refer
to Wang and Zheng [19].

Assumption 2.4 (Continuity). For any player i, ui (ri, r−i,si, s−i) is
continuous in ri, si.

We have the following property regarding self control cost.

Property 2.1 (Strict Cost of Self-Control). Under Assumptions 2.1-2.4,

si ∈ arg max
s′i∈Si

ui (0,0,s′i, s−i) ⇔ Ci (si, s−i) = 0.

Please refer to Wang and Zheng [20] for the proof of the above
property.

Definition 2.2 (Optimal Self-Control). Given any player i and any
strategy choice profile s, an optimal self-control action ri

s imposed by LRSi

satisfies the following two conditions: (1) Ci (si, s−i) = ui (0,0,si, s−i)−
−ui (r

i
s,0,si, s−i) and (2) si ∈ arg max

s∈Si

ui (r
i
s,0,s, s−i).

It is easy to see from the above definition that ri
s is such a self-control

action for LRSi that can ensure that SRSi has no incentive to unilaterally
deviate from (si, s−i) at the lowest possible cost. In this sense we call ri

s

an «optimal» self-control.

3. The Monks Story

Suppose that two monks, A and B, are playing an infinitely-repeated
normal-form game. In each period, each monk has two actions available:
E (Making Effort) and N (Making No Effort). Monk i’s payoff function
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in period t is denoted by ut
i (st

A, st
B) : {E,N} × {E, N} −→ R, where

i = A,B, t = 1, 2, . . ., and st
i is monk i’s strategy in period t. Monk

i’s discount factor between any two consecutive periods is constant and
denoted by δi, δi ∈ [0, 1], i = A, B. Hence monk i’s total payoff is
∞∑

t=1

[δi]
t−1 ut

i (st
A, st

B). The payoff matrix for the stage game is shown below,

and we assume c > a > 0, b > 0, 2a > c− b.

Stage Game
Monk B

E N

Monk A E (a, a) (−b, c)

N (c,−b) (0, 0)

We consider the following 3 scenarios and compare the results under
different scenarios.

3.1. Scenario 1: History-Independent Strategy

In Scenario 1, we assume that the game in each period is considered
independent. In other words, the monks’ decisions in period t + 1 are
independent of the outcomes in periods 1, . . . , t. It is easy to know that in
any period t, the equilibrium strategy profile is (N, N) and the equilibrium
payoff profile is (0, 0). So the total payoffs are (0, 0).

3.2. Scenario 2: History-Dependent Strategy

In Scenario 2, we assume that monks’ strategies can depend on the
history of the outcomes. In this case, with the stage game repeated
infinitely, it is possible for monks to cooperate in order to achieve higher
payoffs. We are interested in the following equilibrium strategy profile,
which achieves the highest equilibrium payoffs for both monks.

Monk i’s strategy is as follows:

1. In period 1 he plays E;

2. In period t (≥ 2) he plays st
i =

{
E if

(
st′

A, st′
B

)
= (E,E) ∀t′ < t,

N otherwise,
i = A,B.
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It is easy to verify that monk i has no incentive to deviate if and only if
δi ∈

[
c−a

c
, 1

]
, i = A,B. When min {δA, δB} ∈

[
c−a

c
, 1

]
, monk i can achieve

his highest payoff a
1−δi

, i = A,B.

3.3. Scenario 3: Dual-Self Approach

In Scenario 3, instead of adopting the single-self decision making
model which is used in the first 2 scenarios, we apply the dual-self
approach to our example. Suppose that each monk has a long-run self and
a sequence of short-run selves (each of whom lives only for one period).
The long-run self of monk i (LRSi) can impose a costly self-control action
rt
i ∈ Rt

i ⊆ R in each period t, which may vary across different periods and
will affect his own payoff (but not the other monk’s payoff) at the current
period. Under the above settings, monk i’s payoff function in period t is
denoted by ut

i (rt
i , s

t
A, st

B) : Rt
i×{E,N}×{E, N} −→ R, where i = A,B,

t = 1, 2, . . ., rt
i is LRSi’s self-control in period t, and st

i is the strategy
choice of the short-run self of monk i in period t (SRSt

i ).2 Monk i’s total

payoff is thus
∞∑

t=1

[δi]
t−1 ut

i (rt
i , s

t
A, st

B).

Let Ct
i (st

A, st
B) be the self-control cost of monk i in period t, when

monks’ strategy profile in that period is (st
A, st

B). Note that ri,t
st
A,st

B
is the

optimal self-control imposed by LRSi in period t, given i ∈ {A,B} and
any strategy choice profile (st

A, st
B) by SRSt

A and SRSt
B.

The Structure of Self-Control Cost

Consider payoff structure of the stage game.
According to Assumption 2.1 and Property 2.1, in any period t, we

have

Ct
A (E, E) > Ct

A (N, E) = 0, Ct
A (E,N) > Ct

A (N,N) = 0,

Ct
B (E, E) > Ct

B (E,N) = 0, Ct
B (N,E) > Ct

B (N,N) = 0.

By Definition 2.2, in any period t, we have

a > ut
A

(
rA
EE, E,E

) ≥ ut
A

(
rA
EE, N, E

)
, (3.1)

a > ut
B

(
rB
EE, E,E

) ≥ ut
B

(
rB
EE, E, N

)
, (3.2)

0 = ut
A (0, N, N) ≥ ut

A (0, E, N) , (3.3)

0 = ut
B (0, N, N) ≥ ut

B (0, N, E) . (3.4)

2For simplicity, we took the redundent term r−i out of the expression of the payoff
function, by Assumption 2.3.
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Inequality (3.1) means that in period t there exists a nonzero optimal
self-control rA

EE so that SRSt
A chooses E over N when SRSt

B chooses E.
Similarly, inequality (3.2) means that in period t there exists a nonzero
optimal self-control rB

EE so that SRSt
B chooses E over N when SRSt

A

chooses E.
Inequality (3.3) means that in period t there exists an optimal self-

control rAt
NN = 0 so that SRSt

A chooses N over E when SRSt
B chooses N .

Similarly, inequality (3.4) means that in period t there exists an optimal
self-control rBt

NN = 0 so that SRSt
B chooses N over E when SRSt

A chooses
N .

Note that when the self-control is too costly (Ct
i (E,E) ≥ a,

i = A,B), the long-run selves have no incentive to cooperate, because in
that case each monk’s per-period payoff is non-positive if they choose to
be cooperative while their payoff is zero if they defect. In order to focus
on the interesting case, we make the following assumption.

Assumption 3.1 (Gains from Cooperation). For i = A,B, monk i’s
self-control cost for strategy choice profile (E, E) in any period t must
satisfy the following condition:

Ct
i (E, E) < a.

3.3.1. Case 1: the short-run selves can observe the previous
results

An Equilibrium Strategy

We are interested in the following equilibrium strategy profile, which
achieves the highest equilibrium payoffs for both monks.

Monk A’s strategy is as follows:

A1 In period 1, LRSA imposes a self-control r1
A = rA

EE; SRS1
A chooses

s1
A (r1

A) =

{
E if u1

A (r1
A, E,E) ≥ u1

A (r1
A, N, E) ,

N otherwise .

A2 In period t (≥ 2), LRSA imposes

rt
A (ht) =

{
rA
EE if ∀t′ < t,

(
st′

A, st′
B

)
= (E, E),

0 otherwise .

SRSt
A chooses st

A (ht, r
t
A) =
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=





E if
{

ut
A (rt

A, E,E) ≥ ut
A (rt

A, N, E) , ∀t′ < t,
(
st′

A, st′
B

)
= (E, E), or

ut
A (rt

A, N, N) < ut
A (rt

A, E,N) ,∃t′ < t,
(
st′

A, st′
B

)
= (E, E),

N otherwise .
Similarly, monk B’s strategy is as follows:

B1 In period 1, LRSB imposes a self-control r1
B = rB

EE; SRS1
B chooses

s1
B (r1

B) =

{
E if u1

B (r1
B, E,E) ≥ u1

B (r1
B, E, N) ,

N otherwise.

B2 In period t (≥ 2), LRSB imposes

rt
B (ht) =

{
rB
EE if ∀t′ < t,

(
st′

A, st′
B

)
= (E, E),

0 otherwise.

SRSt
B chooses st

B (ht, r
t
B) =

=





E if
{

ut
B (rt

B, E,E)≥ut
B (rt

B, E, N) ,∀t′< t,
(
st′

A, st′
B

)
=(E, E), or

ut
B (rt

B, N, N)<ut
B (rt

B, N, E) , ∃t′<t,
(
st′

A, st′
B

)
=(E, E),

N otherwise.

Analysis

To see why the strategy profile described above forms a Subgame
Perfect Nash Equilibrium, let us check whether monks have incentive to
deviate or not.

It suffices to only consider monk A since the game is symmetric.
Also note that monk A’s dual-self problem when t = 1 is exactly the

same as the case when t ≥ 2 and ∀t′ < t,
(
st′

A, st′
B

)
= (E, E). Thus the

following analysis only focuses on the t ≥ 2 case.
Consider SRSt

A in period t:
History On the Equilibrium Path: If the outcome is

(
st′

A, st′
B

)
= (E, E)

for any t′ < t:
Assuming that monk B (LRSB from period t on and {SRSs

B}∞s=t),
{SRSs

A}∞s=t+1 and LRSA from period t on are playing the equilibrium
strategies described above, LRSB will impose self-control rt

B = rB
EE . By

(3.2), ut
B

(
rB
EE, E,E

) ≥ ut
B

(
rB
EE, E, N

)
, so SRSt

B plays E in period t.
Given that LRSA will impose self-control rt

A = rA
EE in period t, the payoff

of SRSt
A is ut

A

(
rA
EE, E,E

)
by playing E and his payoff is ut

A

(
rA
EE, N,E

)

by playing N .
By (3.1), ut

A

(
rA
EE, E,E

) ≥ ut
A

(
rA
EE, N,E

)
, so SRSt

A in period t has
no incentive to deviate from playing E.
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History Off the Equilibrium Path: If the outcome is
(
st′

A, st′
B

) 6= (E, E)

for some t′ < t:

Assuming that monk B (LRSB from period t on and {SRSs
B}∞s=t),

{SRSs
A}∞s=t+1 and LRSA from period t on are playing the equilibrium

strategies described above from period t on, LRSB will impose a zero
self-control rt

B = 0. By (3.4), ut
B (0, N,N) ≥ ut

B (0, N,E), so SRSt
B plays

N in period t. Given that LRSA will impose a zero self-control rt
A = 0 in

period t, the payoff of SRSt
A is ut

A (0, E,N) by playing E and his payoff
is ut

A (0, N,N) by playing N .

By (3.3), ut
A (0, N,N) ≥ ut

A (0, E,N), so SRSt
A in period t has no

incentive to deviate from playing N .

Consider LRSA in period t:

History On the Equilibrium Path: If the outcome is
(
st′

A, st′
B

)
= (E, E)

for any t′ < t:

Assuming that monk B (LRSB from period t on and {SRSs
B}∞s=t),

{SRSs
A}∞s=t and LRSA from period t + 1 on are playing the equilibrium

strategies described above, LRSB in period t will impose self-control
rt
B = rB

EE. By (3.2), SRSt
B plays E in period t.

If LRSA in period t follows the equilibrium strategy described above,

his total payoff should be
∞∑

τ=0

[δA]τ ut
A

(
rA
EE, E, E

)
= 1

1−δA
uA

(
rA
EE, E,E

)
.

However, if he deviates in period t by imposing a different self-control
r∗A, his total payoff would be{

uA (r∗A, E, E) + δA

1−δA
uA

(
rA
EE, E,E

)
if ut

A (r∗A, E,E) ≥ ut
A (r∗A, N, E) ,

uA (r∗A, N, E) otherwise.

In order to make sure that LRSA has no incentive to deviate in period
t, we must have

1

1− δA

uA

(
rA
EE, E,E

) ≥

≥ max
r∗A 6=rA

EE ,

ut
A(r∗A,E,E)≥ut

A(r∗A,N,E)

uA (r∗A, E,E) +
δA

1− δA

uA

(
rA
EE, E,E

)
, (3.5)

1

1− δA

uA

(
rA
EE, E,E

) ≥ max
r∗A 6=rA

EE ,

ut
A(r∗A,E,E)<ut

A(r∗A,N,E)

uA (r∗A, N, E) . (3.6)
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By Definition 2.2, we know

CA (E, E) = uA (0, E,E)− uA

(
rA
EE, E, E

) ≤
≤ uA (0, E, E)− max

r∗A 6=rA
EE ,

ut
A(r∗A,E,E)≥ut

A(r∗A,N,E)

uA (r∗A, E, E) . (3.7)

Hence uA

(
rA
EE, E, E

) ≥ max
r∗A 6=rA

EE ,

ut
A(r∗A,E,E)≥ut

A(r∗A,N,E)

uA (r∗A, E,E), which

implies that (3.5) always holds.
Thus, in order to make sure that LRSA has no incentive to deviate

in period t, it suffices to have (3.6) hold. Since

max
r∗A 6=rA

EE ,

ut
A(r∗A,E,E)<ut

A(r∗A,N,E)

[uA (r∗A, N,E) ] = uA (0, N,E) = c (3.8)

by Property 2.1, it suffices to have

1

1− δA

uA

(
rA
EE, E,E

) ≥ c. (3.9)

Solving for δA, we obtain the following result:

δA ≥
c− uA

(
rA
EE, E, E

)

c
>

c− a

c
. (3.10)

History Off the Equilibrium Path: If the outcome is
(
st′

A, st′
B

) 6= (E, E)

for some t′ < t:
Assuming that monk B (LRSB from period t on and {SRSs

B}∞s=t),
{SRSs

A}∞s=t and LRSA from period t + 1 on are playing the equilibrium
strategies described above, LRSB will impose a zero self-control rt

B = 0.
By (3.4), SRSt

B plays N in period t.
If LRSA follows the strategy described above, his total payoff should

be
∞∑

τ=0

[δA]τ ut
A (0, N,N) = 0. However, if he deviates in period t by

imposing a different self-control r∗A, his total payoff would be{
uA (r∗A, E, N) if ut

A (r∗A, E,N) > ut
A (r∗A, N, N) ,

uA (r∗A, N, N) otherwise.
However, for any r∗A ∈ R, we have uA (r∗A, E,N) ≤ uA (0, E,N) =

= −b < 0, and uA (r∗A, N, N) ≤ uA (0, N,N) = 0. Therefore in this case
LRSA has no incentive to deviate in period t.
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Based on the analysis above, monk A has no incentive to deviate if

and only if δA ≥ c−uA(rA
EE ,E,E)
c

.
Similarly, we can have an inequality for δB:

δB ≥
c− uA

(
rB
EE, E,E

)

c
>

c− a

c
. (3.11)

This means that monk B has no incentive to deviate if and only if

δB ≥ c−uB(rB
EE ,E,E)
c

.
We conclude our analysis with the following proposition.

Proposition 3.1. In the infinitely-repeated dual-self monks game descri-
bed in this subsection, where the short-run selves can observe the previous
results, the strategies specified above form a Subgame Perfect Nash Equ-
ilibrium if and only if

δA ∈
[

c− uA

(
rA
EE, E, E

)

c
, 1

]
and δB ∈

[
c− uB

(
rB
EE, E, E

)

c
, 1

]
.

3.3.2. Case 2: the short-run selves do not observe the previous
results

An Equilibrium Strategy

We are interested in the following equilibrium strategy profile and
equilibrium belief profile, which achieve the highest equilibrium payoffs
for both monks.

Let µt
i

(
st
−i|rt

i

)
: {E, N} → [0, 1] denote SRSt

i ’s belief about the choice
of SRSt

−i in period t, given the self-control action rt
i . Obviously we should

require µt
A (E|rt

A) + µt
A (N |rt

A) = 1, ∀rt
A ∈ Rt

i.
Monk A’s strategy is as follows:

A1 In period 1, LRSA imposes a self-control r1
A = rA

EE; SRS1
A chooses

s1
B (r1

B) =

{
E if u1

A (r1
A, E,E) ≥ u1

A (r1
A, N, E) ,

N otherwise.

A2 In period t (≥ 2), LRSA imposes

rt
A (ht) =

{
rA
EE if ∀t′ < t,

(
st′

A, st′
B

)
= (E, E),

0 otherwise.
SRSt

A chooses

st
A (rt

A) =

{
E if ut

A (rt
A, E,E) ≥ ut

A (rt
A, N, E) , rt

A 6= 0,

N otherwise.
SRSt

A’s

belief is such that µt
A (E|rt

A 6= 0) = 1, µt
A (N |rt

A = 0) = 1.
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Similarly, monk B’s strategy is as follows:

B1 In period 1, LRSB imposes a self-control r1
B = rB

EE. SRS1
B chooses

s1
B (r1

B) =

{
E if u1

B (r1
B, E,E) ≥ u1

B (r1
B, E, N) ,

N otherwise.

B2 In period t (≥ 2), LRSB imposes

rt
B (ht) =

{
rB
EE if ∀t′ < t,

(
st′

A, st′
B

)
= (E, E),

0 otherwise.
SRSt

B chooses

st
B (rt

B) =

{
E if ut

B (rt
B, E,E) ≥ ut

B (rt
B, E, N) , rt

B 6= 0,

N otherwise.
SRSt

B’s

belief is such that µt
B (E|rt

B 6= 0) = 1, µt
B (N |rt

B = 0) = 1.

Analysis

The analysis of case 2 is analogous to that of case 1. We hence skip
the details and conclude our analysis with the following proposition.

Proposition 3.2. In the infinitely-repeated dual-self monks game descri-
bed in this subsection, where the short-run selves do not observe the previ-
ous results, the strategies and beliefs specified above form a Perfect Bays-
ian Nash Equilibrium if and only if

δA ∈
[

c− uA

(
rA
EE, E, E

)

c
, 1

]
and δB ∈

[
c− uB

(
rB
EE, E, E

)

c
, 1

]
.

Remarks:

Here are a few remarks regarding the results we have found.

1. In Scenario 3, in equilibrium the range for δi depends on monk i’s
self-control cost structure, whereas in Scenario 2, the range for δi

is the same for both monks and does not depend on the monks’
self-control cost structure.

2. In Scenario 3, the highest equilibrium lifetime payoffs (with the
strategies specified earlier in this subsection) are

(
1

1−δA
uA

(
rA
EE, E, E

)
,

1
1−δB

uB

(
rB
EE, E, E

)) ≥ (c, c), whereas in Scenario 2, the highest

equilibrium payoffs are
(

a
1−δA

, a
1−δB

)
≥ (c, c). The difference in

equilibrium payoffs between Scenarios 2 and 3 is C1
i (E,E)

1−δi
, i = A,B.
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3. In Scenario 3, the equilibrium range for δi in Proposition 3.2 (for
case 2) is exactly the same as that in Proposition 3.1 (for case 1),
whereas the equilibrium concepts and the equilibrium strategies
are different. Based on the results in cases 1 and 2, it is worth
noting that less information in the dual-self monks game does not
necessarily lead to a decrease in efficiency.

4. We compare our approach with the standard coordination explana-
tion. Although we both study efficiency issue, our approach provides
different perspectives. The standard one examines how efficiency is
compromised as the number of players i.e. monks increases. Our
approach focuses on how cooperation is achieved through self-control
actions given a fixed number of players and how efficiency depends
on information: in an infinitely repeated setting, the long-run selves
of monks have incentive to impose optimal self-control so that the
short-run selves of monks will interact in a cooperative way.

4. Conclusion

The concept of dual-self refers to the game played between a long-run
patient self and a sequence of short-run impulsive selves. We expand the
single-player decision problem, which is the focus of current literature,
into a multi-player decision problem. Such an expansion is in accordance
of our belief that a multi-player dual-self model would be a step closer
to depicting individuals interacting with each other in reality. We thus
propose a dual-self model that adopts the theoretical framework establish-
ed by Fudenberg and Levine [11] mainly for two reasons: First, the
concept of two selves used in Fudenberg and Levine [11] is consistent
with the previous literature; second, their DSM provides advancements
to O’Donoghue and Rabin’s model with quasi-hyperbolic discounting.

Our assumptions on self-control are consistent with the axioms of
Fudenberg and Levine [11], which are Assumption of Costly Self-Control,
Assumption of Unlimited Self-Control, and Assumption of Continuity.
We add a new assumption, Assumption of Independent Self-Control, to
our model in order to show the interactions among multiple players in
the context of games.

In this paper, we use an example of The Monks Story to show the
interaction effects among players as well as between long-run self and
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short-run selves within each single player over time, which is in line
with the two-dimensioned game that our model depicts: a game played
among multiple players as well as a game played between short-run
selves and long-run self. It is worth noting that this story is commonly
discussed in marketing, human resource and management studies to show
coordination and cooperation effects as the number of players increases,
while we offer a different perspective to look at the same example. More-
over, we use our proposed dual-self model to analyze the Monks Story and
compare the results found in three scenarios such as history-independent
strategy case, history-dependent strategy case, and dual-self approach.
In the dual-self scenario, we show results in two cases: 1) the short-run
selves can observe the previous outcomes; and 2) the short-run selves
cannot do so.

In conclusion, we would like to point out that our current work on
dual-self has not taken into account the impact of social preferences
such as how the degree of being selfish and altruistic can affect dual-
self individual decision-making problems. This could be a direction for
future work.
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