Геология и рудоносность габбро-анортозитов Подужемской структурной зоны (Карелия, Западное Беломорье)

Березин А.В.

ФГУП ВСЕГЕИ, г. Санкт-Петербург, e-mail: berezin-geo@yandex.ru

В результате обработки материалов работ по МГХК-1000, проведенных в 1999–2002 годах на листах Q-35,36 (ВСЕГЕИ, ИМГРЭ, отв. исполнитель Г.М. Беляев) по разработанному автором методу рудных факторов (МРФ) были выделены несколько ранее не выделявшихся перспективных площадей. [1]

В процессе заверки автором в 2005 году из Кемской площади в одном из массивов было выявлено ильменит-магнетитовое рудопроявление (далее – Сумашевское), относимое к Fe-Ti-V типу.

В пределах Беломорского пояса комплекс габбро-анортозитов [3] развит достаточно широко и подразделяется на 2 типа: боярский и котозерский. Первый тип, как правило характеризуется расслоенностью и варьирует от магнезиальных до железистых разностей, второй (котозерский) отличается повышенным содержанием глинозема и ассоциацией с гранатовыми амфиболитами.

Выявленное рудопроявление Сумашевское в Кемском районе Республики Карелия наиболее близко по типу Fe-Ti-V оруденения к единственному в беломоридах рудопроявлению «Травяная гу-ба» (далее- РТГ) с сопутствующим Аu-МПГ оруденением в габбро-анортозитах. [4]

Рассматриваемая площадь находится в пределах хетоламбинского покрова Беломорского пояса, который представлен Bt-Amf гнейсами и амфиболитами, содержащими линзовидные прослои кианитовых гнейсо-сланцев.

На площади интенсивно проявлены процессы гранитизации с развитием мигматит и анатектит – гранитов по гнейсам.

Номер пачки	Условное обозначение	Мощность, м	Характеристика пород
9	 	>6	Серый плагиоамфиболит, ср/з, (grt-5%), в подошве- горнблендит
8	F yıt F gıt f yıt F	13-14	Рудное гранатовое полосчатое габбро, гиг-кр/з, со шлирами (70%), (grt до 80%), богатовкрапленные руды
7	[8-9	Серый плагиогнейс, ср/з, (grt-5%), в подошве- горнблендит
6		4-5	Рудный гранатовый горнблендит, гиг-кр/з, (grt до 80%), вкрапленные руды, в подошве- жильные руды (0,2-0,3м)
5	ΓΓΓ	5-6	Меланократовый габбро-амфиболит, ср/з, (grt-10%)
4		14-15	Лейкократовый полосчатый плагиоамфиболит, ср-кр/з, (grt-5- 10%), в подошве- лиза богатовкрапленных руд (M=1м)
3		3-4	Серый тонкополосчатый плагиоамфиболит, кр/з, (grt-10-20%)
2		4.5-5.5	Меланократовый полосчатый габбро-амфиболит, кр/з, (grt-15- 60%)
1		>2	Гранатовый горнблендит, кр/з, (Grt-60%, Hbt-40%)

Сводная колонка

Всего >66,5м

Рис. 1. Сводная колонка пород рудопроявления Сумашевское

Рис. 2. Диаграмма AFM для пород рудопроявления Сумашевское. Т – толеитовая, CA – известково-щелочная серия

```
– область
пород РТГ [4]
```

Подужемская (Кемская) разломная зона (КРЗ), которая контролирует размещение интрузий [2,3] (в тч. рудоносных), характеризуется длительным периодом развития: с лопийского по сфекофеннское время (AR₂-PR₂). В зоне влияния КРЗ развиты бластомилониты по гранито-гнейсам.

Интрузивные комплексы представлены габброидами и пироксенитами [2]. Часть из этих тел не обозначены на государственной геологической карте 1:200 000, хотя являются достаточно большими.

Рудопроявление находится в замковой части антиклинальной складки, сложенной серыми Bt-Amf гнейсами и амфиболитами с интрузиями габбро и пироксенитов. Один из фрагментов предполагаемого дифференцированного массива размером 150 х 50м. (видимый размер) представлено субвертикально залегающим телом интенсивно амфиболизированного меланократового габбро и плагиоамфиболитами (апоанортозитами), переходящими в гранатовые амфиболиты (рис. 1). Наиболее рудоносной является его меланократовая часть со шлирами и линзами с ильменит-магнетитовой минерализацией. Поверхность шлиров сильно ожелезнена и более крупнозернистая, чем вмещающие породы. Объемная доля рудных шлиров в породе достигает 70%, а содержания рудных минералов (ильменита и магнетита) в шлирах до 60%. Отличительной особенностью апоанортозитовых пород является зеленоватый оттенок плагиоклаза.

По петрохимическим особенностям породы относятся к толеитовому ряду (рис. 2) и варьируют от меланогаббро и пироксенитов (Ol_{CYPW} до 7%) до анортозитов.

Отмечаются повышенные концентрации (в 2-6 раз), по сравнению с вмещающими породами были установлены у V, Co, Cu и Zn. Содержания Ti, Mn и V закономерно возрастают от лейкократовых к меланократовым разностям (Ti до 13 – 20 кг/т). По данным атомно-адсорбционного анализа в единичных пробах пород обнаружено золото до 0,016ppm.

На диаграмме спектров распределения редких земель (рис. 3) породы образуют схожие тренды распределения с ярко выраженным Еи максимумом, который контролируется наличием плагиоклаза в поздних дифференциатах. Наиболее ранним дифференциатом являются меланократовые разности (пироксениты), что вполне согласуется с предположениями других исследователей.

Рис. 3. Спектры распределения редких земель пород рудопроявления Сумашевское (нормировано на хондрит- Sun&McDonald, 1989)

Геологическая позиция и петрохимические особенности рудопроявления имеют много общего с аналогичными комплексами не только Карелии, но и Финляндии, Швеции, Гренландии (Скаергаард), Бразилии (Барро-Вермело) и С.Америки.

Рудная минерализация преимущественно богатовкрапленная и представлена ильменитом, магнетитом, пиритом и редкими зернами халькопирита. Текстура руд полосчатая, структура сидеронитовая. Ильменит присутствует в двух генерациях: каплевидный (100–200 мкм) со структурами распада, в пироксене и амфиболе; в срастаниях с магнетитом (до 2-3 мм). Магнетит присутствует так же в 2-х генерациях: в виде сплошных зерен и в виде пористых, скорее всего метаморфогенных. Рассматривая состав рудообразующих минералов можно отметить различия в составе магнетитов (выделено в табл. 1), обусловленные, видимо, метаморфизмом. Сульфиды представлены пиритом и халькопиритом (до 0,5%), пирит в виде единичных зерен (200-700 мкм), на которых развиваютя каемки замещения представленные магнетитом, в его составе присутствуют Со и Ni до 1%.

Рудная минерализация в амфиболизированных вебстеритах (нерудных) представлена редкими зернами (до 100мкм) магнетита (Al₂O₃ – 0,35%) и ильменита, которые нередко замещает сфен. Рудные минералы включены в зерна пироксена что можно рассматривать как факт более ранней его кристаллизации. Это может также говорить об исходной пересыщенности магмы титаном.

Таблица 1. Основные статистические характеристики составов рудных минералов по данным микрозондового анализа (вес.%)

Магнетит (титаномагнетит)						Магнетит пористый						
	Ν	Mean	Min	Max	SD	Ν	Mean	Min	Max	SD		
MgO	8	0,35	0,12	0,53	0,12	8	0,23	0,05	0,45	0,16		
Al2O3	8	0,19	0,06	0,41	0,14	9	0,38	0,28	0,69	0,14		
SiO2	8	0,41	0,06	1,59	0,56	5	0,14	0,07	0,31	0,10		
TiO2	8	14,55	0,04	29,52	10,09	7	0,07	0,01	0,31	0,11		
V2O3	8	0,96	0,52	1,48	0,31	9	0,52	0,32	0,93	0,20		
MnO	7	0,24	0,01	0,98	0,35	4	0,02	0,01	0,04	0,01		
FeO	8	77,53	65,85	91,18	8,70	9	91,33	88,96	93,02	1,58		
CoO	4	0,06	0,02	0,14	0,06	5	0,08	0,04	0,18	0,06		
NiO	5	0,03	0,01	0,06	0,02	6	0,05	0,02	0,09	0,03		
CuO	4	0,04	0,02	0,06	0,02	4	0,06	0,04	0,10	0,03		
ZnO	4	0,05	0,02	0,07	0,02	3	0,08	0,03	0,14	0,05		
Ильмени	Т					Аналитик	А.В. Па	вшуков,	ЦЛ ВСЕГІ	ЕИ, 2006		
MgO	15	0,66	0,34	1,40	0,30	Жирным шрифтом показаны компоненты по которым						
Al2O3	13	0,10	0,04	0,25	0,06	значимо различаются магнетиты.						
SiO2	10	0,18	0,03	0,37	0,12							
TiO2	15	48,56	46,88	50,54	0,99							
V2O3	15	1,00	0,68	1,35	0,22							
MnO	15	0,49	0,17	0,75	0,16							

Приближенная оценка температуры образования руд, произведенная по [5], показала что основная масса руд кристаллизовалась в диапазоне 700-820°С и log pO₂=-14, а метаморфические преобразования руд происходили при 380-450°С и log pO₂=-22. Температура 1-й фазы титаномагнетита (ликвидусной) в силикатах ~ 1200°С для рудопроявления Сумашевское дает основания полагать, что кристаллизация из расплава проходила в достаточно широком диапазоне температур.

Можно предполагать, что формирование рудной минерализации проходило в несколько этапов:

1. Образование оливинсодержащих вебстеритов и аноортозитов:

FeO

CoO

NiO

CuO

ZnO

15

6

7

5

8

48,04

0.09

0.05

0,05

0,11

46,76

0.03

0,01

0,03

0.03

50,39

0.20

0,12

0,09

0.22

1,03

0,08

0,02

0,06

a) Кристаллизация ранней фазы с каплеобразным, мелковкрапленным титаномагнетитом со структурами распада

б) Кристаллизация пресыщенного Fe-Ti-V расплава- образование вкрапленных Ti-Mgt руд

с) Кристаллизация основной силикатной фазы с остаточными порциями рудной фазы

d) Появление пирита на постмагматической стадии кристаллизации расплава.

2. Метаморфизм амфиболитовой фации ({Ol} → Px → Amf)

3. Начало гранитизации (Окисление пирита в магнетит)

4. Гранитизация (Появление сфена в амфиболите, распад титаномагнетита (пористая фаза))

5. Конец гранитизации (Образование сидеронитовых ильменит-магнетитовых руд)

6. Амфиболизированные вебстериты и анортозиты с ильменит-магнетитовыми рудами (V и сульфидсодержащие)

Выводы:

На территории Карелии выявлено новое рудопроявление ильменит-магнетитового типа, аналогичное рудопрявлению Травяная губа.

Рудопроявление связано с интрузиями анортозит – габбро-пироксенитовой формации, расположение которых контролируются зоной долгоживущего разлома (КРЗ), наложенным метаморфизмом амфиболитовой фации и последующей гранитизацией.

Существенную роль в рудообразовании сыграли такие процессы как пересыщенность магмы TiO₂, процессы дифференциации, метаморфизм и гранитизация пород, второстепенная роль отводится расположению в зоне разлома.

Выявленные интрузивные тела являются фрагментами дифференцированного массива анортозит – габбро – пироксенитовой формации, испытавшего метаморфизм и гранитизацию. В связи с этим следует рассмотреть вопрос о платинометальном и сопутствующем оруденении интрузий.

Автор выражает благодарность вед.н.с. Института Геологии Карельского Научного Центра Степанову В.С. за предоставленные материалы и консультации, а так же сотруднику кафедры ГМПИ Геологического факультета СПбГУ Алексееву И.А. за помощь в пробоподготовке образцов.

Литература

1. *Березин А.В.* «Новые перспективы минерагенического районирования Беломорского подвижного пояса» тезисы докладов в .кн. «Беломорский подвижный пояс: геология, геохронология, минерагения». Петрозаводск, 2005.

2. Степанов В.С. Отчет Летнереченской партии по съемке 1:50 000, 1964-1966 гг.

3. Степанов В.С. Основной магматизм докембрия Западного беломорья, Л, 1981.

4. Степанов В.С., Слабунов А.И. «Амфиболиты и ранние базит-ультрабазиты Северной Карелии», Л, 1989.

5. Степанов В.С. «Благороднометальное рудопроявление Травяная губа и возможная генетическая связь его с комплексом габбро-анортозитов Западного Беломорья» в сборнике «Геология и полезные ископаемые Карелии», №4, КарНЦ РАН, Петрозаводск, 2001.

6. *Khalil J.S., Lindsley D.H.* «A solution model for coexisting iron-titanium oxides», American Mineralogist, vol. 66, p. 1189–1201, 1981.

Микропроявления миграционного углеродистого вещества в залежах максовитов

Бискэ Н. С.

Институт геологии Карельского научного центра РАН, г. Петрозаводск

Наряду с широко известными макропроявлениями миграционного шунгита, или высшего антраксолита, представляющего собой природный битум метаантрацитовой стадии углефикации, шунгитоносные породы содержат разнообразные микропроявления миграционного углеродистого вещества (МУВ). В связи с малыми размерами (менее O,5 см в поперечнике) МУВ изучены сравнительно слабо. Вместе с тем они оказывают существенное влияние на технологические свойства шунгитоносных пород и являются важным источником информации об условиях их формирования.