U-Pb возраст интрузий перидотитов-габброноритов и амфиболовых габбро оз.Гайколя в Шомбозерской структуре (Северная Карелия)

Богачев В.А.¹, Матуков Д.И.²

¹ГГУП «СФ Минерал», г. С-Петербург ²ФГУП «ВСЕГЕИ» им. А.П. Карпинского, г. С-Петербург

Шомбозерская структура – одна из крупнейших зеленокаменных структур зоны сочленения Карельской и Беломорской областей, остается совершенно не изученной геохронологически, а схема ее геологического строения весьма условна. Структура традиционно рассматривается как ассимитричный, неравномерно сжатый синклинорий. На юго-западе выделяется Гайкольская синклиналь, сложенная ятулийскими и людиковийскими комплексами, а в северо-восточном крыле синклинория абсолютно доминируют метаморфизованные и деформированные породы сумия-сариолия и, возможно, верхнего лопия [1,2]. Результаты интерпретации данных сейсмического профиля 4В Кемь-Калевала не подтвердили простого мульдообразного строения Шомбозерской структуры. Ее внутреннее строение интерпретируется как пакет тектонических пластин падающих на восток, возможно осложненный антиформным поднятием в западной части структуры, т. е. на месте Гайкольской синклинали [3, 4].

Интрузии гайкольского перидотит-габброноритового комплекса и тесно сопряженные с ними структурно массивы амфиболовых габброидов шардозерского комплекса, образуют узкий, вытянутый ареал в осевой части Гайкольской синклинали, и локализованы только в пределах туфогенно-осадочных пород и коматиит-базальтовых лав гайкольской свиты, которые они отчетливо интрудируют. Все перечисленные комплексы традиционно относятся к людиковию. Большинство массивов обеих комплексов представляют собой пластообразные тела, конформные со складчатой структурой рамы, что свидетельствует об их доскладчатом характере. Большинство массивов гайкольского комплекса слабо дифференцированы, сильно изменены и сложены апоперидотитовыми и апопироксенитовыми породами хлорит-амфибол-серпентинитового состава с карбонатом и тальком. Детальное геолого-петрографическое изучение дифференцированных, а частью и стратифицированных перидотит-габброноритовых массивов оз. Гайколя позволило Н.А.Горбик [5] рассматривать их как людиковийский аналог сумийских расслоенных интрузий Оланги или лерцолит-габброноритовых массивов Беломорья. Возрастные взаимоотношения перидотит-габброноритовых интрузий и массивов амфиболовых габброидов дискуссионны. Мелкие, разно ориентированные тела перидотит-габброноритов (тектонические фрагменты?) «погружены» в крупный массив амфиболовых габброидов, а их внутренняя структура срезается контактами тел. По данным бурения и геофизики их подошва залегает на глубине от первых десятков до первых сотен метров. В массивах амфиболовых габбро развиты жилы амфиболовых кварцсодержащих лейкодиоритов (плагиоклазитов), имеющие с габбро ясные, но не резкие контакты. Аналогичные жилы отмечались нами и в габброноритах, что указывает на более молодой возраст амфиболовых габброидов – лейкодиоритов относительно габброноритов. Тесная пространственно-структурная связь и одинаковый характер распределения редких и редкоземельных элементов в амфиболовых габбро - лейкодиоритах и перидотитах-габброноритах (рис. 1, 2), говорит о парагенетической связи этих двух групп пород, на что указывали предыдущие исследователи [6].

Нами проведено датирование магматических цирконов из жилы амфиболовых лейкодиоритов в амфиболовых габбро – обр. МБ-1200 и амфиболизированных габброноритов верхнего горизонта дифференцированного перидотит-габброноритового тела – обр. МБ-1208. Значения возрастов составляют, соответственно, 2353 ±14 и 2412,7±4 млн. лет (рис. 3, 4).

Цирконы пробы МБ-1200 (24 зерна) желтого, розового и коричневого цветов относятся к одной генерации. В основном все зерна непрозрачные, единичные зерна полупрозрачные. Около 70% всех цирконов представляют собой обломки идиоморфных призматических кристаллов, около 30% – субидиоморфные зерна циркона. Включений немного. Размер зерен циркона 150-250 мкм, Ку 2-5. В КЛ интенсивность свечения циркона слабая в серых и темно серых тонах, наблюдаются следы метасоматического замещения и пятнистое строение. Содержание урана 288-3257 мкг/г, тория 52-3931мкг/г, Th /U 0.14-1.4.

Рис. 1. Графики распеределения РЗЭ в породах массивов оз. Гайколя

Рис. 2. Спайдер-диаграмма для пород массивов оз. Гайколя

Рис. 3. Диаграмма с конкондией для цирконов пробы МБ-1200

Рис. 4. Диаграмма с конкондией для цирконов пробы МБ-1208

Цирконы пробы МБ-1208 (21 зерно) в основном представлены прозрачными идиоморфными и субидиоморфными удлиненными кристаллами и обломками желтоватого и розоватого цветов. Включений в них очень мало. Размер зерен – 100-200 мкм. В КЛ интенсивность свечения слабая в темно серых тонах. В основном зерна не зональные, в единичных зернах она слабо выражена. Содержание урана 778-2986 мкг/г, тория 159-3710 мкг/г, Th/U 0.14-1.34. В двух округлых зернах наблюдаются отчетливо-зональные ядра, светло-серые в катодо-люминисцентном изображении. Вероятно, это ксеногенные цирконы архейского фундамента.

U-Pb датирование проводилось в ЦИИ ΦГУП «ВСЕГЕИ» на ионном микрозонде SHRIMP-II. Отобранные вручную зерна цирконов вместе с зернами цирконовых стандартов TEMORA и 91500 были имплантированы в эпоксидную смолу и вполовину сошлифованы. Для выбора точек датирования в пределах зерна использовались оптические и катодо-люминисцентные изображения, отражающие внутреннюю структуру цирконов. Измерения U-Pb отношений на SHRIMP-II проводились по методике Williams *I.S.*[7]. Интенсивность первичного пучка молекулярных отрицательно заряженных ионов кислорода составляла 4 нА, диаметр кратера составлял 25 мкм. Обработка полученных данных осуществлялась с использованием программы SQUID (Ludwig, 2000). U-Pb отношения нормализовались на значение 0.0668, приписанное стандартному циркону TEMORA, что соответствует возрасту этого циркона 416.75 млн лет [8]. Погрешности единичных анализов (отношений и возрастов) приводятся на уровне одной сигма, погрешности вычисленных конкордантных возрастов и пересечений с конкордией приводятся на уровне двух сигма. Построение графиков с конкордией проводилось с использованием программы ISOPLOT/EX (Ludwig, 1999).

Полученные данные указывают на более молодой возраст амфиболовых габбро, а тела перидотитов-габброноритов можно рассматривать как мегаксенолиты в кровле массива амфиболовых габбро. Близкие значения возраста подтверждают вероятную парагенетическую связь перидотитов-габброноритов и амфиболовых габбро. Во-вторых, результаты датирования определенно свидетельствуют об отсутствии людиковийских образований в Шомбозерской структуре и подтверждают принципиальную модель ее строения, построенную по данным сейсмопрофиля 4В. Строение ее юго-западной части, вероятно, представляет собой антиформу сложенную сумийско-сариолийскими породами в окружении синформ второго порядка, выполненных метапесчаниками ятулия.

Порода	1	2	3		4	5	6
№ пробы	МБ-1200	МБ-1214	МБ-1207	МБ-1208	МБ-1212Б	МБ-1219	МБ-1205
SiO2	67,30	54,10	52,90	51,60	50,60	46,00	46,10
TiO2	1,11	1,49	0,70	0,56	0,76	0,38	0,37
Al2O3	14.50	14.40	15.13	11.60	5.76	6.31	5.15
Fe2O3t	5,40	12,50	9,43	10,40	11,70	12,50	13,40
MnO	0,08	0,17	0,15	0,17	0,18	0,19	0,20
MgO	1,11	3,80	7,35	13,10	16,20	21,80	25,80
CaO	1,97	8,42	9,36	8,57	11,80	7,41	5,69
Na2O	7,94	3,53	2,91	1,75	1,27	0,22	0,63
K2O	0,32	0,63	1,03	0,48	0,24	0,09	0,31
P2O5	0,18	0,15	0,07	0,06	<.05	<.05	<.05
ппп	0,22	0,85	0,69	1,41	0,92	4,42	1,72
Сумма	100,00	100,00	99,73	99,60	99,40	99,40	99,50
Ti	6660	8940	4220	3360	4560	2280	2220
V	<50	190	170	150	170	110	110
Cr	32	61	460	1200	1900	2800	3000
Со	8	35	41	53	65	86	103
Ni	11	41	181	355	394	684	936
Cs	0,11	0,60	1,35	1,46	0,89	0,40	0,70
Rb	3,7	18,5	34	14,8	6,3	2,1	8,1
Ba	119	170	360	280	180	130	170
Th	10,60	5,14	2,52	1,66	1,06	0,64	0,76
U	2,34	1,25	0,66	0,39	0,26	0,19	0,13
Sr	110	422	291	150	48	22	45
Zr	437	180	67	46,7	44,3	26,2	36,6
Hf	11,20	4,27	1,80	1,24	1,11	0,75	0,83
Nb	30,6	13,4	4,51	9,8	6,3	3,7	1,9
Та	1,51	0,71	0,23	0,23	0,20	<0,1	0,10
Y	28,3	19,8	14,70	10,30	9,91	6,45	5,67
La	23,3	20,4	12,55	7,48	3,05	0,80	3,70
Ce	51,20	41,70	24,15	15,40	7,54	2,54	7,87
Pr	6,16	5,44	2,99	1,94	1,12	0,46	0,95
Nd	22,9	22,2	11,40	7,4	5,5	2,5	4,0
Sm	5,33	4,84	2,35	1,64	1,69	0,91	0,92
Eu	1,74	1,45	1,14	0,54	0,53	0,29	0,30
Gd	5,84	4,73	2,66	1,87	1,82	1,03	1,09
Tb	0,82	0,67	0,42	0,26	0,30	0,20	0,18
Dy	5,01	3,75	2,52	1,73	1,81	1,16	1,02
Но	1,04	0,75	0,55	0,37	0,39	0,26	0,22
Er	2,92	1,93	1,55	1,08	1,01	0,65	0,62
1m	0,44	0,26	0,24	0,16	0,14	0,10	0,09
Yb	2,89	1,63	1,44	1,02	0,92	0,70	0,57
Lu	0,42	0,28	0,24	0,14	0,13	0,09	0,10
Ga	18,7	21,5	14,75	10,7	8,1	6,6	6,6

Таблица 1. Представительные анализы пород массивов оз. Гайколя

1 – амфиболовый кварцевый лейкодиорит, 2 – амфиболовое габбро, 3 – такситовые кварцевые метагаббронориты, 4– метагаббронориты, 5– метавебстерит, 6– оливиновый ортопироксе – новый вебстерит.

Литература

1. Амозова Т.И., Никольский А.А., Сухолетова Г.Н. Отчет о геолого-съемочных работах м-ба 1:50 000, проведенных Кепареченской партией в Кемском районе КАССР в 1964–1967 г.г. СЗТГУ, 1968.

2. Гилярова М.А. Стратиграфия и структуры докембрия Карелии и Кольского полуострова. ЛГУ, 1972.

3. Житникова И.А., Салтыкова Т.Е., Жданова Л.А. Построение геолого-геофизичес-кого разреза по профилю 4В на основе интерпретации потенциальных полей // Глубинное строение эволюция земной коры восточной части Фенноскандинавского щита. Петрозаводск. 2001.

ГЕОДИНАМИКА, МАГМАТИЗМ, СЕДИМЕНТОГЕНЕЗ И МИНЕРАГЕНИЯ СЕВЕРО-ЗАПАДА РОССИИ

4. Минц М.В., Берзин Р.Г., Заможняя Н.Г. и др. Строение и эволюция коры и верхней мантии восточной части Балтийского щита: геологическая интерпретация сейсморазведочных материалов по профилю 4В// Глубинное строение эволюция земной коры восточной части Фенноскандинавского щита. Петрозаводск. 2001.

5. Горбик Н.А. Комплекс дифференцированных интрузий Гайкольской синклинали. // Интрузивные базиты и гипербазиты Карелии. Петрозаводск, Кар ФАН, 1984.

6. Горбик Н.А. Базитовые и ультрабазитовые комплексы Гайкольской синклинали. // Интрузивные базит-ультрабазитовые комплексы докембрия Карелии. Л.:Наука, 1976.

7. *Williams, I.S.*, 1998. U-Th-Pb Geochronology by Ion Microprobe. In: McKibben, M.A., Shanks III, W.C. and Ridley, W.I. (eds), Applications of microanalytical techniques to understanding mineralizing processes, Reviews in Economic Geology, 7, 1–35.

8. Black, L.P., Kamo, S.L. etc., 2003, TEMORA 1: a new zircon standard for U-Pb geochronology. Chemical Geology, 2000, 155–170.

Архейский-палеопротерозойский мафит-ультрамафитовый вулканизм Балтийского щита: вещественная и изотопно-геохимическая эволюция

Богина М.М., Шарков Е.В.

Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, г. Москва, e-mail: <u>bogina@igem.ru</u>

Мафит-ультрамафитовые ассоциации архейского и палеопротерозойского возраста широко развитые в пределах Балтийского щита формировались в 4 стадии: 3.05-2.9, 2.9-2.8 млрд. лет, 2.5-2.3 млрд.лет, 2.3-1.8 млрд.лет.

Наиболее ранние, мезоархейские представители данной ассоциации (3.05-2.9 млрд. лет) представлены толеитами и коматиитами развитыми в обрамлении древнего Водлозерского блока в составе Сумозерско-Кенозерского, Ведлозерско-Сегозерского, и Южно-Выгозерского зеленокаменных поясов центральной Карелии. Коматииты ассоциации относятся к типу Al-необедненных и характеризуются умеренным содержанием ЛРЗЭ ((La/Sm)N ~0.7) при практически плоском распределении ТРЗЭ ((Gd/Yb) около 1), положительной Nb аномалией и величиной ε Nd(T) варьирующей от 0 до + 3.09. На основе этих данных коматиит-базальтовая ассоциация первого этапа обычно сопоставляется с комплексами океанических плато, связанными с мантийными плюмами, местами несущие следы незначительной коровой контаминации [1, 2].

На втором этапе продолжающийся коматиит-базальтовый магматизм, проявленный в пределах Костомукшской структуры Западной Карелии и структуры Колмозеро-Воронья в Кольском блоке, был дополнен бонинит-базальтовой серией Северо-Карельского зеленокаменного пояса.

Базальты и коматииты Костомукшской структуры обеднены ЛРЗЭ ((La/Sm)_N = 0,66), Th и U, имеют положительную Nb аномалию (Puchtel et al., 1998; Смолькин и др., 2000). [3, 4]. Спектр ТРЗЭ варьирует от умеренно обедненного в коматиитах ((Gd/Yb)_N до 1.18) до плоского в базальтах ((Gd/Yb)_N ~1). По этим параметрам коматииты Костомукшского пояса занимают промежуточное положение между Al-обедненными и Al-необедненными коматиитами. Величина єNd(T) в них варьирует от +2.8 до +3.4 [3].

Коматииты зеленокаменной структуры Ура-Губа пояса Колмозеро-Воронья, также как и Костомукшские, относятся к Al-необедненным разновидностям, несколько смещенным в сторону Alобедненных пород [4], и характеризуются єNd(T) от +2.7 до +3.1, располагаясь несколько выше линии изотопного состава деплетированной мантии. Эти данные и отсутствие признаков контаминации коровым веществом предполагает генерацию коматиитов из деплетированной мантии.

Таким образом, коматииты второго этапа имеют в целом близкий состав и относятся к Al-необедненному типу, смещенному в сторону Al-обедненного типа, что соответствует несколько большим глубинам формирования по сравнению с коматиитами первого этапа. Это позволяет наметить