ной к глубокому эрозионному врезу в палеозойских породах или более обширного водоема с заливом в прадолине р.Андома. В бассейне формировались сезонно-слоистые ленточные глины (№.9). Нижний диамиктон (№8) может интерпретироваться как субаквальная морена или оползневые отложения, сформировавшиеся при обрушении берегов долинного озера. Они перекрываются массивными озерно-ледниковыми глинами с гравием (№7) и выше горизонтом озерно-аллювиальных песчано-глинистых отложений (№№ 5,6), из верхов которого получена датировка в 220 ± 14 тысяч лет назад (N 003203). Толща перекрывается 6-ти метровой основной мореной московского скандинавского оледенения (№ 4), перекрытой маломощными эоловыми песками (№ 3) с возрастом 38 ± 3 тысячи лет назад (N 003202). С эрозионным контактом на московской морене и эоловых песках залегает флювиогляциальный галечник (№ 2) поздневалдайского оледенения. Поздневалдайская морена размыта при его формировании, как и большая часть эоловых песков. Но она хорошо представлена в разрезе Багулы-2, где с гляциодинамическим контактом залегает на серой московской морене.

Отметим, что ранее подморенные отложения были известны в районе Андомской возвышенности лишь по данным бурения (2), а в 80 км к СВ от изученных разрезов в районе д. Колодозеро скважинами вскрыт полный разрез одинцовских, континентальных и морских отложений мощностью около 60 м (1).

Литература

1. Агранова Д.А, Барановская О.Ф., Травина М.А., Эпштейн Е.С. Морские среднеплейстоценовые отложения в юго-восточной Карелии // Стратиграфия и палеогеография четвертичного периода Севера европейской части СССР. Петрозаводск.. КНЦ РАН. 1977. С. 88–97.

2. *Савинов Ю.А.* Четвертичные отложения Вологодской области // Материалы по геологии и полезным ископаемым Северо-Запада РСФСР. Л.: 1966 С. 192–214.

Датирование реперных событий в истории докембрийских сложнодислоцированных комплексов (на примере Беломорской эклогитовой провинции)

Докукина К.А.¹, Каулина Т.В.², Конилов А.Н.¹

¹ Геологический институт РАН, г. Москва, e-mail: <u>dokukina@mail.ru</u> ² Институт Геологии КНЦ РАН, г. Апатиты

В докембрийских сложно и многократно дислоцированных комплексах большой проблемой является разделение на этапы, последовательность и абсолютный возраст тектоно-термальных событий. В зоне Гридинского архейского эклогитсодержащего меланжа выделяют эклогиты архейского и палеопротерозойского возраста. К архейским эклогитам относят небольшие изометричные и вытянутые эклогитовые будины и линзы, локализующиеся в кислом гранито-гнейсовом матриксе, в которых был получен возраст ~ 2,7 млрд. лет (Бибикова и др., 2003), а протолитом считаются породы архейских океанических комплексов (Володичев и др., 2004). К палеопротерозойским эклогитам отнесены недеформированные и деформированные (складчатые, будинированные) эклогитизированные дайки, по валовому составу соответствующие будинам и линзам «архейских» эклогитов, которые наряду с цирконами архейского возраста содержат палеопротерозойские цирконы (2,42-2,45 млрд. лет). Геохимические и петрологические исследования тех и других эклогитов показали схожесть составов и единый P-Т тренд для разных типов пород, пересекающий пространства эклогитовой, гранулитовой повышенных давлений и амфиболитовой повышенных давлений фаций. Значения возраста, полученные из цирконов в Гридинской зоне меланжа (литературные и наши данные), статистически укладываются в 4 группы, имеющие традиционную интерпретацию [1, 4-6, 9]: (1) ~3.00-2.78 млрд. лет (осадконакопление); (2) 2.72-2.63 млрд. лет (метаморфизм, значение 2,72 млрд. лет – эклогитовый); (3) 2.47-2.42, 2.12 млрд. лет (внедрение и эклогитизация даек лерцолит-габброноритового комплекса); (4) 1.9-1.8 млрд. лет (свекофеннский тектоно-метаморфический этап).

С целью ограничить сверху время проявления НР метаморфизма на мысе Варгас (рис. 1) были отобраны две геохронологические пробы. Первая проба (образец D17-1) была отобрана из эклогитоподобной породы дайки метагаббро на участке, где дайка пересекает полосчатость вмещающих ее кислых гнейсов. Петрологические исследования показали, что дайка испытала последовательный метаморфизм в условиях эклогитовой, гранулитовой высоких давлений и амфиболитовой фации. Двенадцать цирконов датированных на SHRIMP II (образец D17-1) дали широкий диапазон значений от 1.0 до 3.0 млрд. лет (рис. 2, таблица 1). Две популяции цирконов дали возраст 2822±39 и 2715±19 млн. лет. Первая популяция имеет геохимические черты сходства с цирконами вмещающих тоналитовых гнейсов, вторая популяция – с цирконами из гранитоидов. Два зерна циркона дали возраст ~ 2.4 млрд. лет. Sm-Nd модельный возраст, рассчитанный по отношению к деплетированной мантии с разными параметрами дали значение ~3.3 млрд. лет (таблица 2).

Рис. 1. Геологическая схема мыса Варгас:

1 – тектонические брекчии; 2 – гранитогнейсы; 3 – кислые пегматитовые жилы; 4 – базитовые дайки и фрагменты даек; 5 – элементы залегания; 6 – место отбора и номер образца

ГЕОДИНАМИКА, МАГМАТИЗМ, СЕДИМЕНТОГЕНЕЗ И МИНЕРАГЕНИЯ СЕВЕРО-ЗАПАДА РОССИИ

№ анализа	²⁰⁶ Pb _c %	U ppm	Th ppm	²³² Th/ ²³⁸ U	²⁰⁶ Pb* ppm	²⁰⁷ Pb/ ²³⁵ U	±%	²⁰⁶ Pb/ ²³⁸ U	±%	Rho	Age, 1	Ma
D-17-1.1.1	0,32	159	33	0,21	71,1	14,150	1,70	0,5179	0,80	0,46	2811	±25
D-17-1.2.1	0,65	313	270	0,89	62,0	5,816	1,40	0,2287	0,69	0,50	2693	±19
D-17-1.3.1	0,53	94	28	0,31	14.5	1,750	4,70	0,1785	1,30	0,27	960	±92
D-17-1.4.1	0,08	131	79	0,63	69.2	18,930	1,30	0,6159	0,85	0,66	3002	±15
D-17-1.5.1	0,18	273	31	0,12	126,0	13,870	1,40	0,5350	0,65	0,48	2725	±20
D-17-1.6.1	0,05	347	182	0,54	154,0	14,060	0,86	0,5168	0,61	0,71	2804,2	±10
D-17-1.7.1	0,09	229	14	0,06	98,5	12,710	1,20	0,5000	0,72	0,62	2692	±15
D-17-1.8.1		154	108	0,72	68,5	13,540	1,20	0,5192	0,84	0,68	2735	±15
D-17-1.9.1		407	247	0,63	185,0	15,290	0,77	0,5304	0,56	0,73	2898,2	± 8.6
D-17-1.10.1	0,68	131	81	0,64	51,3	9,560	2,00	0,4526	0,97	0,49	2382	±29
D-17-1.11.1	0,39	82	58	0,72	32,4	10,000	2,20	0,4571	1,20	0,54	2441	±31
D-17-1.12.1	0,07	58	24	0,44	26,9	15,000	1,90	0,5407	1,30	0,69	2836	±23

Габлица 1 . SHRIMP–II U-Th-Pb дан	ые для цирконов из дайки	и метагаббро D17-1	(мыс Варгас)
--	--------------------------	--------------------	--------------

Таблица 2. Sm-Nd данные для дайки метагаббро D17-1 (мыс Варгас)

Образец	Порода	Sm (ppm)	Nd (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	T(U-Pb)	εNd(T)	T-DM ¹ Gol	T-DM ² De-Paol	TDM ³ (Ma)
D-17/1	Габбро	5,793	25,19	0,139	0,511451	2450	-5,0	3443	3342	3445

Примечания: ¹ – модельный возраст по отношению к деплетированной мантии с параметрами [Goldstein & Jacobsen, 1988]; ² – модельный возраст по отношению к деплетированной мантии с параметрами [DePaolo, 1981]; ³ – модельный возраст по отношению к максимально деплетированной мантии.

Рис. 2. U-Pb диаграмма с конкордией для циркона из дайки метагаббро (проба D17-1), мыс. Варгас (данные SHRIMP-II, CL фото цирконов)

Обратите внимание, что все зерна цирконов отличаются друг от друга по оптическим свойствам

Вторая геохронологическая проба была отобрана из кварц-полевошпатовой лейкосомы на протяжении этой же дайки (рис. 1) на участке, где она испытывает деформацию, амфиболизацию и мигматизацию (образец D17-4). Лейкосома оказалась более информативной. Цирконы из лейкосомы по изотопным соотношениям и другим характеристикам соответствуют цирконам мигматитового генезиса. Пять навесок циркона были датированы классическим U-Pb методом, и получилось согласованное значение возраста 2634±5 млн. лет (рис. 3, таблица 3). Петрологические исследования лейкосомы показали, что в их составе присутствует реликты предшествующих более высокобарических условий: Ті-содержащие фенгиты (3.17 катионов Si на 11 атомов O) и клиноцоизит-кварцевые симплектиты, подобные которым были обнаружены [3, 8] в клиноцоизитовых алмазсодержащих гнейсах UHP-массива Кокчетав (Центральный Казахстан). Полученный изохронный возраст лейкосомы ограничивает сверху условия эклогитового метаморфизма, поскольку в лейкосоме все цирконы имеют единый пегматоидный генезис и одну возрастную популяцию. Лейкосома пронизывает уже сформированную дайку метагаббро, и, судя по высокобарным реликтам, формировалась в условиях декомпрессии – после эклогитов. Неясным остается вопрос интерпретации молодых значений возраста, полученных по дайке (2 конкордантные точки 2382±29 и 2441±31 млн. лет). По нашему мнению традиционная интерпретация этих значений как возраст магматизма и внедрения даек в данном случае некорректна. Однако, для окончательного решения требуются дополнительные геохронологические исследования, которые проводятся в настоящее время.

Рис. 3. U-Pb диаграмма с конкордией для циркона из кварц-полевошпатовой лейкосомы дайки метагаббро D17 (проба D17-4)

Таблица 3. U-Pb изотопные данные для цирконов из кварц-полевошпатовой лейкосомы (проба D17-4), расщепляющей дайку метагаббро D17-1 в участке ее деформации (мыс Варгас)

№ анализа	Фракция	Наве- ска, мг	Pb, ppm	U ppm	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁶ Pb/ ²⁰⁷ Pb	²⁰⁶ Pb/ ²⁰⁸ Pb	²⁰⁷ Pb/ ²³⁵ U [*]	±%	²⁰⁶ Pb/ ²³⁸ U [*]	±%	Rho	Age, Ma
D-17/4-11	150-200 мкм	3,9	250,8	471,8	1021	5,3020	18,3300	11,9631	0,78	0,4903	0,51	0,65	2625±10
D-17/4-92	150-200 мкм	0,8	517,8	1835,5	1452	5,3638	31,7337	6,5689	1,79	0,2671	1,64	0,92	2638±12
D-17/4-11-I	150-200 мкм	3,9	232,4	1285,0	1477	5,3829	25,2786	4,1694	1,05	0,1700	0,91	0,86	2633±9
D-17-4	<100 мкм	16,5	149,4	460,5	1819	5,2970	20,3500	7,6299	0,70	0,3033	0,70	0,80	2676±6
D-17/4-6	<100 мкм	0,8	443,2	1153,4	1278,0	5,3201	22,5000	8,8350	0,98	0,3591	0,95	0,87	2638±4

* – значения исправлены на масс-фракционирование 0.18±0.06 а.т. и для Pb, холостое загрязнение 0.1-0.3 нг для Pb и 0.05 нг для U. Поправка на обыкновенный Pb введена по модели Стейси-Крамерса.

Таким образом, сценарий архейской океанической субдукции в Гридинской зоне не приемлем, поскольку протолитом эклогитов здесь служили мафические дайки внутри сформированной континентальной коры, в отличие от эклогитизированных фрагментов офиолитовых комплексов на севере Беломорской провинции [7]. Мы полагаем, что высокобарические комплексы Гридинской зоны были сформированы при континентальной субдукции, вероятно, завершившейся на рубеже 2634±5 Ma.

Литература

1. Бибикова Е.В., Слабунов А.И., Володичев О.И., Кузенко Т.И., Конилов А.Н. Изотопно-геохимическая характеристика архейских эклогитов и глиноземистых гнейсов Гридинской зоны тектонического меланжа Беломорского подвижного пояса (Балтийский щит) // Изотопная геохронология в решении проблем геодинамики и рудогенеза. материалы II Российской конференции по изотопной геохронологии. Санкт-Петербург: ЦИК, 2003. С. 68–71.

2. Володичев О.И., Слабунов А.И., Бибикова Е.В. и др. Архейские эклогиты Беломорского подвижного пояса (Балтийский щит) // Петрология, 2004. Т. 12. № 6. С. 609-631.

3. Корсаков А.В., Тениссен К., Козъменко О.А., Овчинников Ю.И. // Геология и геофизика. 2006. Т. 47. № 4. С. 499–512.

4. Слабунов А.И., Куликова В.В., Степанов В.С., Куликов В.С., Матуков Д.И., Кевлич В.И. U-Pb геохронология (данные ионного микрозонда SHRIMP – II) цирконов Кийостровского расслоенного массива Беломорского подвижного пояса и корреляция палеопротерозойского магматизма юго-восточной части Фенноскандинавского щита // Изотопное датирование процессов рудообразования, магматизма, осадконакопления иметаморфизма. Материалы III Российской конференции по изотопной геохронологии. М.: ГЕОС, 2006. Т. 2. С. 281–286.

5. Слабунов А. И., Степанова А.В., Бибикова Е.В., Бабарина И.И., Матуков Д.И. Неоархейские габброиды Беломорского подвижного пояса: U-Pb геохронология по цирконам и геодинамические следствия // Изотопное датирование процессов рудообразования, магматизма, осадконакопления и метаморфизма. Материалы III Российской конференции по изотопной геохронологии. М.: ГЕОС. 2006. Том 2. С. 286–290.

6. Слабунов А.И., Володичев О.В., Бибикова Е.В. U-Pb геохронология, Nd систематика и петрология раннепротерозойских эклогитов Беломорского подвижного пояса (Балтийский щит) // Изотопная геохронология в решении проблем геодинамики и рудогенеза. материалы II Российской конференции по изотопной геохронологии. Санкт-Петербург: ЦИК, 2003. С. 465–467.

7. Konilov A.N., Shchipansky A.A., Mints M.V. Belomorian HP-UHP metamorphic Archean belt of the Pacific type // PCGT-2005, 2005. P. 239–242.

8. Korsakov A.V., Shatsky V.S., Sobolev N.V., Zayachkovsky A.A. Garnet-biotite-clinozoisite gneisses: a new type of diamondiferous metamorphic rocks of the Kokchetav massif // European J. Miner. 2002. V. 14. P. 915–929.

9. Slabunov A.I., Lobach-Zhuchenko S.B., Bibikova E.B. et al. The Archean nucleus of the Fennoscandian (Baltic) Shield. In: Gee D.G. & Stephenson R.A. (Eds.) European Lithosphere Dynamics. Geological Society, London, Memoirs. 2006. V. 32. P. 627–644.

Хромитоносные магматические комплексы Карело-Кольского региона

Дюжиков О.А.¹, Додин Д.А.², Кравченко Г.Г.¹, Туровцев Д.М.¹

¹Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, г. Москва, e-mail: <u>sharkov@igem.ru</u>

²ВНИИОкеангеология, г. Санкт-Петербург

Уникальные месторождения хромитов Кемпирсая на юге Урала стали после распада СССР частью территории Казахстана, а Россия, несмотря на богатейшие минерально-сырьевые ресурсы, бедна этим важнейшим сырьем, необходимым для многих целей, но, прежде всего, для производства легированной стали. Известные в Карело-Кольском регионе месторождения и проявления хромитов требуют детальных поисково-оценочных работ и глубокого анализа их рентабельности. При этом важно учитывать то обстоятельство, что проводимые специализированные работы по детальному изучению продуктивности магматических комплексов ориентированы как на оценку хромито-