ГЕОДИНАМИКА, МАГМАТИЗМ, СЕДИМЕНТОГЕНЕЗ И МИНЕРАГЕНИЯ СЕВЕРО-ЗАПАДА РОССИИ

10. Чащин В.В., Баянова Т.Б., Левкович Н.В. Кислогубская свита верхнеархейского Терско-Аллареченского зелёнокаменного пояса (Кольский полуостров, Россия) // Стратиграфия. Геологическая корреляция. 2004. Том 12, № 6. С. 3–15.

11. Amelin Yu. V., Heaman L.M., Semenov V.S. U-Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: implications for the timing and duration of Palaeoproterozoic continental rifting // Precambrian Res. - 1995. V. 75. P. 31–46.

Петрохимические серии лампроитовых пород Костомукши

Попов М.Г., Раевская М.Б., Горьковец В.Я.

Институт геологии, КарНЦ РАН, г. Петрозаводск, e-mail: gorkovet@krc.karelia,ru

Впервые предпринята попытка выделения петрохимических серий и соответствующих им петрографических рядов пород среди среднерифейских [1] ламроитовых пород Костомукши на основе данных, имеющихся у нас и заимствованных из публикаций и отчетов Севзапгеологии. Учтено 76 силикатных анализов.

На диаграмме 100·FeO+Fe₂O₃/FeO+Fe₂O₃+MgO - SiO₂ (рис.1) выделяются магнезиальная и железистая серии. Последняя выделена нами [2]. Она представлена апопироксенитовой биотит (флогопит) – амфиболовой породой с ильменитом и карбонатом и силикатно-карбонатными породами двух типов: 1 – ильменит-кварц-карбонат-флогопит-амфиболовой с микроблоковой структурой и 2 – кальцит-флогопитовой с гранолепидобластовой. Содержание карбоната в них достигает 50%. В последней породе присутствуют магнезиальный алюмохромит (Cr₂O₃=51,8-58,2%), монацит с высоким содержанием Ce, La, Pr, Nd, стронциевый апатит, ильменит, пирротин. Эти минералы содержатся и в кимберлитоподобных брекчиях (оранжитах). Изучению петрогеохимических особенностей и минерального состава пород магнезиальной серии посвящены все публикации и отчеты до 2006 г. [3-10, 13]. Детально изучались разновидности пород от оливин-флогопитового до флогопитлейцитового состава, то есть типичные лампроиты. Содержание лейцита в крайних разновидностях пород этого ряда достигает 40%.

В публикациях Е.В.Путинцевой, А.Г.Ульянова [9, 10] отмечалось, что кроме лейцитсодержащих пород в районе Костомукши развиты и мелилитсодержащие. Причем подчеркивалось, что мелилит и особенно продукты его замещения обычно исследователями пропускаются, хотя их содержание иногда достигает 60%. Наметился петрографический ряд мелилитсодержащих пород, ждущих своего детального изучения.

На петрохимических диаграммах Al₂O₃-MFT(MgO/ΣFeO+TiO₂) (рис.2) и MgO-ΣFeO+TiO₂-Al₂O₃ (рис.3) среди пород магнезиальной серии Костомукши выделяются две подсерии: железо-титанистая и глиноземистая. Первой соответствует ряд пород, содержащих лейцит, а второй – содержащих мелилит. На диаграммах (2, 3) фигуративные точки двух подсерий образуют единое поле с постепенными переходами между породами подсерий. Это позволяет предположить, что породы рассматриваемых двух подсерий комагматичны и произошли в результате глубинной эволюции единого магматического расплава.

Т.Л.Махоткин [13] пришел к выводу, что кроме лампроитов в Костомукше развиты слюдяные кимберлиты. Е.В.Путинцева, А.Г.Ульянов [9, 10] заключили, что этот вопрос сложный и требует дальнейшего изучения.

На диаграмме CaO+Na₂O+K₂O-SiO₂+Al₂O₃ (рис.4) фигуративные точки калиевых пород Костомукши расположены в поле лампроитов и лишь некоторые в зоне перекрытия полей лампроитов и кимберлитов группы 2. Ни одного анализа внутри поля типичных кимберлитов 2 не расположено. Имеются лишь кимберлитоподобные породы, связанные постепенными переходами по минеральному составу и петрохимическим особенностям с ламроитами.

Рассмотрим конкретный пример. Кимберлитоподобная брекчия, впервые изученная нами,. состоит из ксенолитов оталькованных ультраосновых пород (Ан. 16,17, таблица), сцементированных магматической существенно флогопитовой породой (Ан.15, таблица). Валовый (смесь ксенолитов и цемента) химический состав брекчии (Ан. 107-04) близок к составу слюдяного кимберлита: SiO₂ – 42,98; TiO₂ – 1,29; Al₂O₃ – 1,84; Fe₂O₃ – 4,72; FeO – 4,26; MnO – 0,16; MgO – 28,80; CaO – 3,27; Na₂O – 0,08; K₂O – 3,44; H₂O – (1,73); п.п.п. – 7,75; P₂O₅ – 0,67; Σ – 99,26.

Puc.3. Диаграмма MgO - ΣFeO+TiO₂ - Al₂O₃ (масс.%) для ламроитовых пород Костомукши: Линиями показаны тенденции изменения составов кимберлитов Al и Fe-Ti серий и лампроитов З.Австралии по С.М.Саблукову [12]. Точки – лампроиты магнезиальной серии Костомукши

Рис.4. Диаграмма CaO+Na₂O+K₂O - SiO₂+Al₂O₃ для пород ультракалиевой серии: △ – мелноитовые кимберлиты; • – лампроиты магнезиальной серии Костомукши

Кроме того, из тяжелой фракции были выделены минералы-спутники: пиропы, хромшпинелиды, хромдиопсиды типичные для кимберлитов и лампроитов.

Ксенолиты и цементирующую породу мы изучили на приборе Vega Tascan (А.Н.Терновой, главный геофизик). На снимках (рис. 5, 6) в обратно отраженных электронах хорошо виден минеральный состав цементирующей породы и ее структура. Размер зерен от 40 до 150 микрон. Порода на 80% состоит из идиоморфных зональных зерен тетраферрифлогопита и 20% ксеноморфных обособлений продуктов кристаллизации капель остаточного расплава. Так же присутствуют калиевый рихтерит, прайдерит, апатит, стронциевый апатит, монацит, пирротин.

30	-	•	2		5.0	- A	5 1	5.0	5.6		5.0		5.0	0.1	4.1	0.1	2.2
№ ан.	1	2	3	4	5-3	5-4	5-1	5-2	5-6	5-7	5-9	5-5	5-8	8-1	4-1	3-1	3-2
№ п.п.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
SiO ₂	40,9	41,97	44,11	43,68	43,17	45,31	45,82	49,25	51,68	51,28	52,49	53,24	49,06	49,64	47,36	65,63	65,39
TiO ₂	6,18	7,85	4,51	6,01	5,18	5,11	4,88	0,99						0,59	2,62		
Al_2O_3	7,56	5,48	8,13	7,94	9,44	4,94	4,00	4,30	1,71	1,56	0,94	6,55	10,33	8,88	5,94		
FeO	8,37	12,1	8,11	9,40	7,14	10,88	10,95	7,62	6,43	6,06	6,63	7,65	6,83	7,96	7,89	5,83	6,20
MgO	20,56	21,56	24,38	22,39	24,18	23,06	23,41	26,74	39,07	39,94	39,26	28,69	28,05	28,18	25,24	28,54	28,40
K ₂ O	10,6	10,96	10,24	10,12	10,89	10,70	10,94	11,09	0,55	0,63		3,31	5,22	4,06	8,01		
CaO									0,56	0,54	0,67	0,56	0,51	0,68	2,65		
Cr ₂ O ₃			0,29	0,44													
Σ	94,17	99,92	99,77	99,97	100	100	100	99,99	100	100,01	99,99	100	100	99,99	99,71	100	99.99

Таблица. Химические составы минералов и пород из брекчии

В номере анализа 5–3 первая цифра 5 обозначает номер участка анализа, а вторая цифра 3 – порядковый номер анализа. Порядковые номера 1-4 – анализы тетраферрифлогопитов (Н.С.Рудашевский, Ю.Л. Крецер. С.Петербург, лаборатория «РС⁺», прибор Camscan-4DV); 5–17 – А.Н. Терновой, ИГ Петрозаводск, прибор Vega Tascan: 5–7 – свежие зерна тетраферрифлогопита, 8 – зерно тетраферрифлогопита, подвергшееся автометаморфизму, 9–11 – скрытокристаллический оливин, 12– 14 – смесь скрытокристаллического оливина и флогопита, 15 – общий анализ цементирующей породы на участке 3×3 мм, 16 и 17 – общие анализы тальковых пород ксенолита на участках 3×3 мм.

Рис. 5. Фотография в обратно отраженных электронах цементирующей породы брекчии 107.

Светло-серые идиоморфные зональные зерна – тетраферрифлогопит. Ксеноморфные обособления темно-серого и черного цвета – продукты кристаллизации остаточного расплава. Скопления белых микрозерен монацита в центре и левой верхней части фотографии

(⁺спектр 7) – место анализа и его порядковый номер (см. табл.).

Свежие зерна тетраферрифлогопитов имеют высокие содержания TiO₂=4,51-7,85% (Ан. 1-7, табл.) характерные для лампроитов. На снимках (рис. 5-6) хорошо видно разделение скрытокристаллических продуктов кристаллизации остаточного расплава на две части: 1 – существенно оливиновую (Ан. 9-11, табл., участки черного цвета) и 2 – смесь оливина с флогопитом (Ан. 12-14, табл., более светлые участки, окружающие черные). Анализ 15 (табл.) представляет усредненный состав цементирующей породы рассматриваемой брекчии. Он близок к составу флогопита. По минеральному составу и петрохимическим особенностям цементирующая порода брекчии является флогопитовым лапмпроитом. Подробнее эта брекчия охарактеризована в статье В.Я.Горьковец и другие данного сборника. Теоретически находки кимберлитов в районе Костомукши возможны.

Литература

1. Беляцкий Б.В., Никитина Л.П., Савва Е.В. и др. Изотопные характеристики лампроитовых даек восточной части Балтийского щита // Геохимия. 1997. № 6. с. 658–662.

2. Попов М.Г., Горьковец В.Я., Раевская М.Б. Магнезиальные и железистые ламроиты Костомукшского района. //Минералогия, петрология и менерагения докембрийских комплексов Карелии. Петрозаводск. 2007. с.79–82.

3. Горьковец В.Я., Раевская М.Б., Белоусов Е.Ф., Инина К.А. Геология и металлогения района Костомукшского железорудного месторождения. Петрозаводск: Карелия. 1981. 141с.

4. Проскуряков В.В., Увадьев Л.И., Журавлев В.А. и др. Щелочные калиевые породы района Костомукшского железорудного месторождения (Западная Карелия) // Доклады АН СССР. 1989. т. 307. № 6. с.1457–1460.

5. Проскуряков В.В., Увадьев Л.И., Воинова О.А. Лампроиты Карело-Кольского региона //Доклады Ан СССР. 1990. т. 314. № 4. с. 940–943.

6. *Проскуряков В.В., Увадьев Л.И.* Ламроиты восточной части Балтийского щита // Известия АН СССР, сер. геол. 1992. №8. с.65–75.

7. *Орлова М.П., Шаденков Е.М.* Лампроиты Костомукши (Юго-Западная Карелия) // Зап.ВМО. 1992. №6. с.33–43.

8. Никитина Л.П., Левский Л.К., Лохов К.И. и др. Протерозойский щелочно-ультраосновной магматизм восточной части Балтийского щита.//Петрология. 1999. т.7. №3. с. 252–275.

9. Путинцева Е.В., Ульянов А.Г. Камафугиты (и кимберлиты группы II) – представители семейства калиевых ультрамафитов Костомукшского дайкового поля. //Рифтогенез, магматизм, металлогения докембрия. Корреляция геологических комплексов Фенноскандии. Петрозаводск. 1999. с.116–117.

10. *PutintsevaE.V., Uljanov A.G.* Kimberlites II and Lamproites of Kostomuksha region as separate complexes of the rocks.//Svekalapko/Europrobe, 2nd Workshop. Abstracts. Repino. 1998. P.52.

11. Саблуков С.М. Петрохимические серии кимберлитовых пород Архангельской провинции.//6 Int. Kimb. Conf. Ext. Abstracts. Novosibirsk. 1995. P. 481–483.

12. Саблуков С.М. О петрохимических сериях кимберлитовых пород.//Доклады АН СССР. 1990. т.313. № 4. с. 935–939.

13. *Mahotkin I.L.* Petrology of Group 2 kimberlite-olivine lamproite (K2L) series from the Kostomuksha area, Karelia area, NW Russia// 7 Int. Kimb. Conf. Ext. Abstracts. Cape Town. 1998. P. 529–531.

Рифейские рифтогенные структуры в раннедокембрийском основании Чапомского грабена на Терском берегу Кольского полуострова

Пржиялговский Е.С.

Геологический институт (ГИН) РАН, г. Москва, e-mail: prz4@yandex.ru

Терригенные отложения рифейского возраста распространены на Терском берегу Кольского полуострова в виде единого поля, протягивающегося от Турьего полуострова до устья р. Варзуга, а восточнее встречаются лишь в виде изолированных впадин – останцов эродированного чехла. Положение и строение подобных останцов является ключом для изучения рифейских рифтогенных разломов в раннедокембрийском кристаллическом фундаменте рифейского чехла. . В данной работе представлены результаты изучения системы рифтогенных разломов и трещин, заложившихся в раннедокембрийских комплексах в вершине крупного рифейского грабена, рассмотрены динамические аспекты наложенно-унаследованного характера развития разрывной сети и критерии возрастной фильтрации трещиноватости. Участок исследования оказался чрезвычайно информативен для детализации морфологии разрывных нарушений, выяснения кинематики смещений и понимания динамических предпосылок развития рифтовой зоны в целом.

Чапомский грабен представляет собой небольшую приразломную впадину асимметричного строения, которая выполнена терригенными толщами рифея – преимущественно песчаниками, алевролитами и конгломератами чапомской свиты, несогласно залегающими на мигматизированных гнейсах и амфиболитах беломорского комплекса, интенсивно дислоцированных в конце архея –раннем протерозое. Впадина вытянута на 5-6 км в северо-западном направлении от устья р. Чапома вдоль системы сбросов, резко ограничивающих распространение рифейских пород с северо-востока. Западное и юго-западное ограничения впадины, также проводимые по подошве рифея, имеют более сложную в плане форму с субширотными маломощными «языками» песчаников и конгломератов, несогласно залегающими на гранито-гнейсах. Максимальные мощности отложений чапомской свиты, разрез которой почти непрерывно вскрыт долиной р. Чапома, наблюдаются в осевой части грабена и вдоль северо-восточной тектонического борта, достигая первых сотен метров.

В тектоническом плане Чапомский грабен находится на продолжении выявленного в акватории Белого моря по сейсмическим данным Керетьско-Лешуконского, в котором мощность рифейских отложений достигает нескольких километров, и фактически является его замыканием[1]. Как и другие грабены Беломорской рифтовой системы Керетьско-Лешуконский грабен обрывается на границе Кольского массива (который в рифейское время и позже оставался практически монолитнам