Работа выполнялась в рамках бюджетного финансирования плановой темы НИР ИГ КарНЦ РАН «Архейские кратоны Земли: строение, происхождение,

- 1. Carter N. L., Baker D. W., George R. P. Seismic anisotropy, flow, and constitution of the upper mantle // Flow and fracture of rocks. 1972. P. 167–190.
- 2. Avé Lallemant H. G., Carter N. L. Syntectonic recrystallization of olivine and modes of from in the upper mantle // Geol. Soc. Amer. Bull. 1970. V. 81, N 8. P. 2203–2220.
- 3. Carter N. L., Avé Lallemant H. G. High temperature flow of dunite and peridotite // Ibid. P. 2181–2202.
- 4. *Лазарев Ю. Й., Кожевников В. Н.* Структурно-петрологическое изучение гранитизации. Л., 1973. 124 с.
- 5. *Кожевников В. Н.* Условия формирования структурнометаморфических парагенезисов в докембрийских комплексах. Л., 1982. 184 с.
- 6. Кожевников В. Н., Белоусов Е. Ф. Некоторые черты гранулитового метаморфизма архейских образований района оз. Тулос // Геология и полезные ископаемые Карелии: Опер.-информ. материалы. Петрозаводск, 1981. С. 7—10.
- 7. Кожевников В. Н., Чухонин А. П., Шулешко И. К. Полихронный высокотермальный метаморфизм древнейших пород Западной Карелии // ДАН СССР. 1987. Т. 292, № 6. С. 1441—1445.
- 8. *Щипцов В. В., Кожевников В. Н., Скорнякова Н. И.* Гранитоиды архея юго-восточной части Балтийского щита. Л., 1987. 119 с.
- 9. Cameron E. M. Archean gold: Relation to granulite formation and redox zoning in the crust // Geology. 1988. V. 16. P. 109–112.
- 10. *Кожевников В. Н.* Архейские зеленокаменные пояса Карельского кратона как аккреционные орогены. Петрозаводск, 2000. 223 с.
- 11. Кожевников В. Н., Голубев А. И., Рыбаков С. И. Факторы контроля золотометалльного оруденения в архейских зеленокаменных поясах: сравнительный анализ Сьюпириор и Карельского кратонов // Отечественная геология. 1998. № 3. С 55–64
- 12. *Hall G*. Autochthonous model for gold metallogenesis and exploration in the Yilgarn // Geodynamics & gold exploration in the Yilgarn. Workshop abstr., 6 August 1998, Perth, Australia. P. 32–35.
- 13. Lambert D., Frick L., Bateman R., Stone W. Geochemistry and rock-fluid interactions in Archaean Lode-Gold Systems: new insights from the Re-Os isotopic system // Ibid. P. 40–44.
- 14. Ord A., Hobbs B. E., Walshe J. L., Zhao C. Development in the simulation of geodynamic processes with direct application to Yilgarn gold mineralization // Ibid. P. 45–51.
- 15. *Кратц К. О.* Геология карелид Карелии. М.; Л., 1963. 210 с.

эволюция, рудогенез» и при поддержке Приоритетной программы 5 ОНЗ РАН (проект 122) и регионального гранта РФФИ № 02-05-97507.

- 16. *Чернов В. М.* Стратиграфия и условия осадконакопления вулканогенных (лептитовых) железисто-кремнистых формаций Карелии. М.; Л., 1964. 123 с.
- 17. Лазарев Ю. И. Структурная и метаморфическая петрология железистых кварцитов Костомукшского месторожления. Л., 1971, 191 с.
- 18. Горьковец В. Я., Раевская М. Б., Белоусов Е. Ф. и др. Геология и металлогения Костомукшского железорудного месторождения. Петрозаводск, 1981. 142 с.
- 19. Опорные разрезы верхнеархейских отложений. Петрозаводск, 1992. 191 с.
- 20. Кожевников В. Н. Геология и геохимия архейских северокарельских зеленокаменных структур. Петрозаводск, 1992. 199 с.
- 21. Лобач-Жученко С. Б., Милькевич Р. И., Арестова Н. А. и др. Стратиграфический разрез Костомукшской структуры Карелии (верхний архей), реконструкции на основе геохронологических, геохимических и изотопных данных // Стратиграфия. Геологическая корреляция. 2000. Т. 8, № 4. С. 3—10.
- 22. Самсонов А. В. Эволюция магматизма гранит-зелено-каменных областей Восточно-Европейского кратона: Автореф. дис. ... докт. геол.-минер. наук. М., 2004. 48 с.
- 23. Puchtel L. S., Hofmann A. W., Mezger K. et al. Oceanic plateau model continental crustal growh in the Archaean: A case study from Kostomuksha greenstone belt, NW Baltic Shield // Earth Planet. Sci. Lett. 1998. 155. P. 57–74.
- 24. Samsonov A. V., Bogina M. M., Bibikova E. V. et al. The relationship between adakitic, calc-alkaline volcanic rocks and TTGs: implications for the tectonic setting of the Karelian greenstone belts, Baltic Shield // Lithos. 2005. V. 79. P. 83–106.
- 25. *Минерально-сырьевая база* Республики Карелии. Кн. 1: Горючие полезные ископаемые. Металлические полезные ископаемые. Петрозаводск, 2005. 280 с.
- 26. Сергеев С. А., Бибикова Е. В., Левченков О. А. и др. Изотопная геохронология Водлозерского гнейсового комплекса // Геохимия. 1990. № 1. С. 73—83.
- 27. Lobach-Zhuchenko S. B., Chekulaev V. P., Sergeev S. A. et al. Archaean rocks from southeastern Karelia (Karelian granite-greenstone terrain) // Precambr. Res. 1993. V. 62. P. 375–398.
- 28. Кожевников В. Н., Бережная Н. Г., Пресняков С. Л. и ∂p . Геохронология циркона (SHRIMP-II) из архейских стратотектонических ассоциаций в зеленокаменных поясах Карельского кратона: роль в стратиграфических и геодинамических реконструкциях // Стратиграфия. Геологическая корреляция. 2006. Т. 14, № 3. С. 19—41.

ОСОБЕННОСТИ ГРАНУЛИТОВОЙ АМФИБОЛИЗАЦИИ В ГРАНУЛИТ-ЭНДЕРБИТ-ЧАРНОКИТОВЫХ КОМПЛЕКСАХ КАРЕЛИИ

Н. Е. Король

Институт геологии Карельского НЦ РАН, Петрозаводск; korol@krc.karelia.ru

Амфиболизация пород обычно связывается с условиями метаморфизма амфиболитовой фации.

В архейских гранулит-эндербит-чарнокитовых (ГЭЧ) комплексах Карелии [1–6], сформировав-

шихся в условиях высоких температур и умеренных и (или) пониженных давлений, широко развиты процессы гранулитовой амфиболизации. Данный термин характеризует образование титанистой буровато-зеленой роговой обманки по ромбическому и моноклинному пироксенам и плагиоклазу на гранулитовом этапе метаморфической эволюции пород ГЭЧ комплексов.

Реперными районами [6] развития ГЭЧ комплексов {1—9} в Карелии являются — в Беломорском подвижном поясе (БПП): {1} — оз. Нотозеро — оз. Ковдозеро, {2} — оз. Керчуг, {3} — полуострова Вичаны и Мундиннаволок оз. Кереть — оз. Топозеро, {4} — губа Поньгома Белого моря — п-ов Поньгомнаволок; в Карельской структуре: {5} — водораздел оз. Тикшеозеро — оз. Пяозеро; {6} — пос. Вокнаволок, {7} — оз. Тулос, а также участки — {8} — среднее течение р. Водлы и {9} — пос. Шальский — восточное побережье Онежского озера.

Беломорские {1-4} и тикшеозерско-пяозерский {5} ГЭЧ комплексы представлены супракрустальными гранулитами основного, среднего, кислого составов с проявлением признаков их первично-эффузивной природы {3} и породами магматического ряда - ультрабазиты - основные ультрабазиты – меланократовые габброиды; габброанортозиты – анортозиты: интрузивными образованиями серии: габброиды - габбродиориты гиперстеновые (диориты – кварцевые диориты – тоналиты \pm плагиограниты); ультраметагенными и интрузивными эндербитами – чарнокитоидами. В ГЭЧ комплексах Карельской структуры {6, 7, 9} состав преимущественно «двухкомпонентный» супракрустальные основные, реже средние гранулиты и эндербиты ± чарнокитоиды.

ГЭЧ комплексы {1—9} претерпели полиэтапную метаморфическую эволюцию, соответствующую условиям метаморфизма от гранулитовой (I или I—IV этапы) — эпидот-амфиболитовой, реже зеленосланцевой фации [6]. Первый гранулитовый (I) этап содержит от одного до четырех периодов развития и осуществляется во всех комплексах в

режиме умеренных и (или) пониженных давлений и в пределах колебаний температур 750–870 °С. Для него характерны полный (1, 2, 3 периоды) и упрощенный (1, 2 периоды) типы метаморфической эволюции, что соответствует ГЭЧ комплексам {1—5} и {6, 7, 9}. Неотъемлемой обязательной составляющей всех комплексов являются супракрустальные основные гранулиты (двупироксеновые кристаллические сланцы), сформировавшиеся в первом (1) периоде, и эндербиты (гиперстенсодержащие кварцевые диориты — тоналиты — плагиограниты), образующиеся при процессах региональной мигматизации и гранитизации во втором или третьем периоде I гранулитового этапа [6].

Полевые наблюдения свидетельствуют о том, что как при эндербитовой мигматизации, так и в интрузивных массивах эндербитов вмещающие породы преимущественно основного, реже ультраосновного состава, слагающие участки и блоки субстрата или ксенолиты, приобретают неравномерную окраску, варьирующую от темновато-серых к темно-серым и темным тонам. При усилении мигматизации цвет становится практически черным. Петрографическое изучение показало, что в гранулитовых образованиях отмечается частичное, реже полное замещение ромбического и моноклинного пироксенов буровато-зеленой роговой обманкой.

Геологические и петрологические исследования привели к выводу о том, что при эндербитообразовании во всех ГЭЧ комплексах осуществляется гранулитовая амфиболизация пород, наиболее полно изученная в районах $\{1-2\}$: оз. Нотозеро — оз. Ковдозеро и оз. Керчуг [4, 6].

Этот процесс более характерен для основных, чем для средних и кислых пород, и прежде всего выражается в образовании реакционных кайм буровато-зеленого амфибола по пироксенам на границе их с плагиоклазами. Минеральные замещения определяются реакцией, рассчитанной с учетом парагенезисов железомагнезиальных минералов (табл. 1, 2) при вариациях составов плагиоклазов от 30 до 60% An.

 Таблица 1

 Реакции образования буровато-зеленого амфибола

№ п.п.	Номер образца	Реакция
1	B-2131-2	$3.5 \text{Hyp}_{53} + 1.7 \text{Cpx}_{38} + 3 \text{Pl}_{30} + 1.3 \text{H}_{2} \text{O} = 1.3 \text{Hbl}_{43} + 7.2 \text{Qtz} + 0.4 \text{Na}_{2} \text{O}$
2	B-1409-4	$4Hyp_{40} + 1,6Cpx_{26} + 3Pl_{40} + 1,4H_2O = 1,4Hbl_{38} + 6,6Qtz + 0,2Na_2O$
3	B-2068-1	4,25Hyp ₄₂ + $1,55$ Cpx ₂₇ + 3 Pl ₄₅ + $1,45$ H ₂ O = $1,45$ Hbl ₃₈ + $6,3$ Qtz + $0,1$ Na ₂ O
4	B-1411-8	$4.5 \text{Hyp}_{43} + 1.5 \text{Cpx}_{25} + 3 \text{Pl}_{50} + 1.5 \text{H}_2 \text{O} = 1.5 \text{Hbl}_{35} + 6 \text{Qtz}$
5	K-1571	$4.6\text{Hyp}_{47} + 1.48\text{Cpx}_{31} + 3\text{Pl}_{52} + 1.52\text{H}_2\text{O} + 0.04\text{Na}_2\text{O} = 1.52\text{Hbl}_{45} + 5.88\text{Qtz}$
6	K-2250-1	4,75Hyp ₃₈ + $1,45$ Cpx ₂₁ + 3 Pl ₅₅ + $1,55$ H ₂ O + $0,1$ Na ₂ O = $1,55$ Hbl ₃₃ + $5,7$ Qtz
7	B-2132-1	$5Hyp_{44} + 1,4Cpx_{30} + 3Pl_{60} + 1,6H_2O + 0,2Na_2O = 1,6Hbl_{35} + 5,4Qtz$
8	B-2068-10	$2Br_{15} + 2Di_8 + H_2O + 0.5Na_2O + 1.5Al_2O_3 = PHbl_{13}$
9	BK-927	$4Hyp_{38} + 1,6Cpx_{25} + 3Pl_{40} + 1,4H_2O = 1,4Hbl + 6,6Qtz + 0,2Na_2O$

 Π р и м е ч а н и е . 1 — двупироксеновый плагиогранит, губа Миронова оз. Нотозеро $\{1\}$; 2-7 — супракрустальные гранулиты с плагиоклазом от 40 до 60% An: 3 — оз. Верхняя Пажма, 5 — оз. Лопское, 6 — оз. Беличье, 7 — губа Миронова оз. Нотозеро — $\{1\}$, 2 и 4 — оз. Керчуг $\{2\}$; 8 — основной ультрабазит — шпинелевый пироксенит, оз. Верхняя Пажма $\{1\}$; 9 — двупироксеновый диорит пос. Вокнаволок $\{6\}$. Символы минералов: An — анортит, Br — бронзит, Hyp — гиперстен, Di — диопсид, Qtz — кварц, Cpx — моноклинный пироксен, Hbl — буровато-зеленая обыкновенная роговая обманка, PHbl — паргаситовая роговая обманка, Pl — плагиоклаз. Арабские цифры означают: внизу символов железо-магнезиальных минералов — железистость — $f(Fe^{2+}/Fe^{2+}+Mg) \times 100\%$, у плагиоклазов — содержание анортита.

 Таблица 2

 Химический состав минералов

No	Мине-	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	H ₂ O ⁻	ппп	Σ	f
п.п.	ралы	SIO_2	$11O_2$	Ai_2O_3	16203	1.60	WIIIO	MgO	CaO	rva ₂ O	$\mathbf{K}_2\mathbf{O}$	1120	111111		1
1	Hyp	50,00	0,27	2,00	1,32	29,56	0,61	14,53	0,70	0,06	0,07	0,19	0,60	99,91	53,3
2	Cpx	50,50	0,30	2,65	1,93	12,81	0,29	11,60	17,83	0,62	0,09	0,09	1,34	100,05	38,3
3	Hbl	41,14	1,90	12,23	3,75	14,15	0,18	10,55	10,52	1,56	1,83	0,22	2,00	100,03	42,9
4	Нур	50,10	0,22	2,42	1,21	24,25	0,95	20,40	0,50	0,02	0,03	0,10	_	100,20	40,1
5	Cpx	50,99	0,43	2,47	2,42	8,08	0,44	12,57	21,83	0,69	0,02	0,10	0,10	100,14	26,3
6	Hbl	41,12	2,74	12,00	4,52	11,53	0,24	10,50	11,74	1,54	1,60	0,12	1,89	99,54	38,2
7	Нур	50,18	0,28	1,52	1,81	24,47	0,52	19,05	0,70	0,10	0,04	0,13	1,53	100,33	42,0
8	Cpx	50,75	0,49	3,09	1,84	8,24	0,24	12,66	20,57	0,53	0,03	0,15	1,45	100,04	26,5
9	Hbl	42,01	1,68	13,06	3,36	12,10	0,15	11,19	11,60	1,61	1,00	_	2,50	100,26	37,7
10	Нур	49,06	0,20	3,32	1,65	24,43	0,62	18,62	0,84	0,15	0,04	0,12	1,18	100,23	42,5
11	Cpx	50,52	0,40	4,24	2,13	7,62	0,23	13,20	20,16	0,75	0,02	0,16	0,81	100,24	24,5
12	Hbl	41,56	1,56	12,86	4,42	11,50	0,18	12,17	11,56	1,83	0,57	0,18	1,60	99,99	34,6
13	Нур	48,95	0,25	2,20	3,28	26,30	0,54	17,00	0,88	0,07	0,03	0,12	_	99,62	46,5
14	Cpx	50,43	0,32	3,28	1,80	9,88	0,23	11,98	20,33	0,61	0,03	0,17	1,17	100,23	31,3
15	Hbl	41,90	1,60	12,60	4,00	14,00	0,18	9,50	10,86	1,56	0,93	0,11	2,90	100,14	45,2
16	Hyp	52,00	0,23	1,29	1,97	21,72	0,53	20,43	0,49	0,06	0,05	0,10	1,21	100,08	37,5
17	Срх	52,40	0,30	2,03	2,05	6,35	0,19	13,56	21,66	0,57	0,04	0,21	0,84	100,20	20,8
18	Hbl	43,66	1,55	13,30	3,15	10,30	0,32	11,71	11,49	1,56	1,22	0,26	1,26	99,78	33,1
19	Нур	49,23	0,15	2,18	1,46	25,68	0,70	18,10	0,70	0,12	0,05	0,14	1,72	100,23	44,4
20	Срх	49,90	0,23	3,50	1,06	9,80	0,36	13,02	20,18	0,57	0,08	0,08	1,34	100,12	29,5
21	Hbl	41,36	1,68	10,32	5,83	11,67	0,16	12,12	11,68	2,00	0,62	0,20	2,30	99,94	35,1

 Π р и м е ч а н и е . Минералы, участвующие в реакциях гранулитовой амфиболизации: 1–3 — обр. B-2131-2, 4–6 — B-1409-4, 7–9 — B-2068-1, 10–12— B-1411-8, 13–15 — K-1571, 16–18 — K-2250-1, 19–21 — B-2132-1. Остальные условные обозначения соответствуют табл. 1.

Расчеты показывают, что в гранулитах основного состава (табл. 1, реакции № 5-7) с плагиоклазами, превышающими по содержанию анортитовой молекулы лабрадор № 50, амфиболизация требует привноса Н₂О и Na₂O, т. е. участия водного флюида, обогащенного натрием. Схема реакции: $Hyp + Cpx + Pl_{>50} + H_2O + Na_2O \rightarrow Hbl + Qtz$. При основности плагиоклазов <50% An (табл. 1, р. № 1-3) реакция происходит под влиянием только водного флюида. Поскольку плагиоклаз относительно кислый, Na₂O в этом случае не поглощается, а выделяется: $Hyp + Cpx + Pl_{<50} + H_2O \rightarrow Hbl +$ Qtz + Na₂O. При участии лабрадора № 50 (табл. 1, р. № 4) буровато-зеленый амфибол образуется с привносом только воды за счет натрия из плагиоклаза, без выделения свободного Na₂O: Hyp + $Cpx + Pl_{50} + H_2O \rightarrow Hbl + Qtz.$

Привнос водно-натриевых флюидов, способствующий реакциям амфиболизации, осуществляется в породах гранулитовых комплексов при эндербитообразовании в ходе процесса региональной мигматизации и гранитизации. В это время формируются реакционные каймы буровато-зеленой роговой обманки по гиперстену и моноклинному пироксену в основных двупироксеновых кристаллических сланцах и происходит преобразование последних в амфиболсодержащие разновидности (рис. 1, а—в).

При усилении мигматизации количество амфибола увеличивается. В основных гранулитах с плагиоклазом, содержащим более 50% анортитовой составляющей, становится возможным переход Нур + Срх + Pl парагенезисов в Нур + Срх + Hbl + Pl. Данный процесс приводит к формированию двупироксен-амфиболовых кристаллических слацев (рис. 1, г), широко развитых в ГЭЧ комплексах [7].

В локальных участках наиболее усиленной мигматизации интенсивность амфиболизации возрастает. При этом постепенно достигается практически полное замещение пироксенов буровато-зеленой роговой обманкой и по двупироксен-амфиболовым кристаллическим сланцам образуются амфиболиты (рис. 2) гранулитовой фации. Иногда в них сохраняются реликтовые зерна ромбического и моноклинного пироксенов.

Участие натрия в ходе реакции амфиболизации способствует понижению анортитовой составляющей в плагиоклазах основных гранулитов. Описанные закономерности подтверждают связь рассмотренного процесса с привносом водных флюидов, обогащенных натрием, без видимого снижения температуры. В ходе реакций амфиболизации в условиях гранулитовой фации отмечается инертное поведение магния и железа [4].

На примере превращения пироксенитов в амфиболсодержащие разновидности был изучен процесс амфиболизации основных ультрабазитов. В шлифах фиксировалось замещение бронзита и диопсида зеленоватой паргаситовой роговой обманкой. Рассчитана реакция (табл. 1, р. № 8) образования данного минерала, протекающая по схеме: $Br + Di + Na_2O +$ $H_2O + Al_2O_3 \rightarrow PHbl$. Процесс происходил с участием водно-натриевых флюидов и сопоставим по времени с амфиболизацией основных гранулитов. Привнос Al₂O₃ связан, вероятно, с некоторой ограниченной миграцией алюминия из вмещающих основных кристаллических сланцев. В результате образуется паргаситовая роговая обманка, устойчивая с бронзитом и диопсидом, однако ее количество не превышает 8%, что позволяет назвать породу амфиболсодержащим пироксенитом.

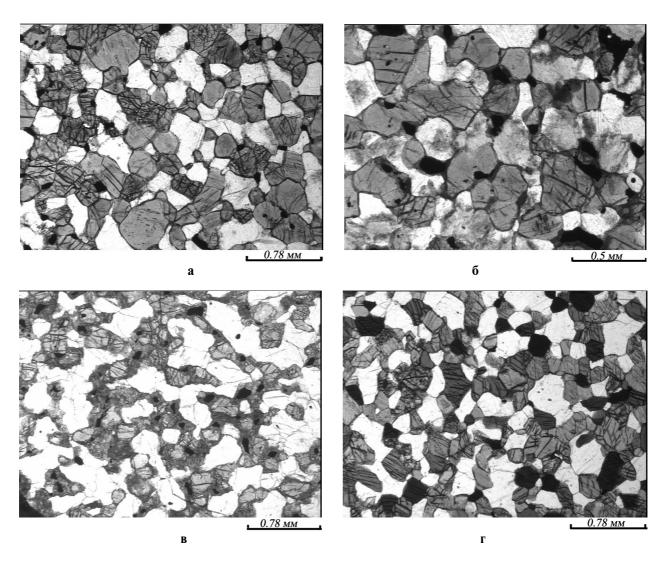


Рис. 1. Гранулитовая амфиболизация в основных гранулитах

Двупироксеновые кристаллические сланцы, практически без буровато-зеленой роговой обманки (а), начальная стадия — редкие каймы Hbl по пироксенам, участки (б), амфиболсодержащие двупироксеновые кристаллические сланцы (в), двупироксен-амфиболовые кристаллические сланцы (г). Шлифы: B-2502-1 (а), K-2229 (б), K-2225-1 (в), B-2153a-2 (г) — без анализатора. Озеро Нотозеро

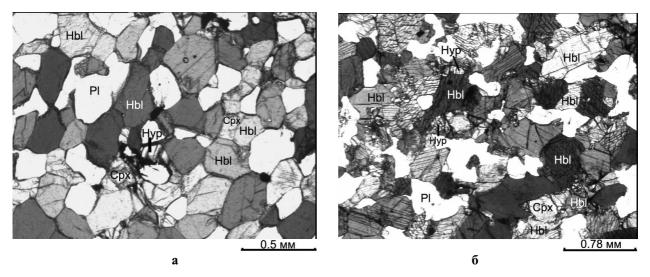
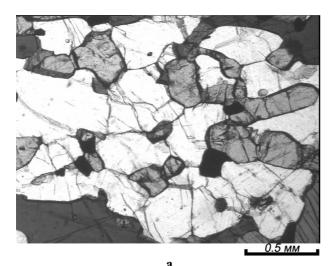
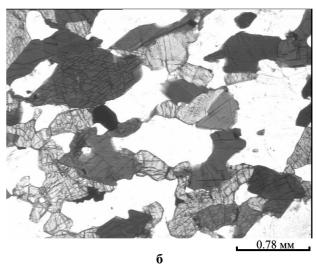


Рис. 2. Амфиболиты гранулитовой фации с редкими реликтами гиперстена и моноклинного пироксена

Заключительная стадия гранулитовой амфиболизации. Шлифы: В-2153а-2z (а), К-II-6 (б) — без анализатора. Озеро Нотозеро


Наблюдаемые в шлифах Hyp + Cpx + Hbl + Pl парагенезисы габброидов единой толеитовой — известково-щелочной магматической серии: габброиды — габбро-диориты — гиперстеновые (диориты — кварцевые диориты — тоналиты ± плагиограниты) — фактически уже черты метаморфической породы. Их происхождение, вероятно, связано с замещением буровато-зеленым амфиболом магматических пироксенов под воздействием водно-натриевых флюидов, привнесенных при эндербитообразовании. Амфиболизация происходит по схеме для основных гранулитов с покислением плагиоклазов от магматических к метаморфическим.


Формирование Hyp + Cpx + Pl , Br + Di \pm Ol \pm Pl парагенезисов в основных гранулитах и метагабброидах, основных ультрабазитах осуществлялось в условиях двупироксеновой, а амфиболсодержащих парагенетических ассоциаций — от двупироксен-роговообманковой до роговообманковой субфации гранулитовой фации [6].

Согласно расчету реакций (табл. 1, р. № 1), для амфиболизации средних и кислых гранулитовых образований необходим чисто водный флюид. Наблюдения в шлифах показали, что в супракрустальных средних гранулитах, магматических двупироксеновых (диоритах — кварцевых диоритах — тоналитах), порфировидных чарнокитоидах губы Миронова, сформировавшихся до эндербитов {1}, да и в последних, чаще всего буровато-зеленый амфибол присутствует в небольших количествах и образует реакционные каймы по ромбическому и

моноклинному пироксенам, характеризуя преимущественно начальную, очень редко среднюю стадию амфиболизации двупироксен-плагиоклазовых парагенезисов. Лишь в отдельных случаях при локальном максимальном проявлении процесса достигается равновесие роговой обманки с сосуществующими пироксенами в двупироксеновых диоритах и чарноэндербитах губы Миронова оз. Нотозеро. В единичных случаях в средних гранулитах губы Тупой оз. Ковдозеро {1} фиксировалось образование амфибол-плагиоклазовых пород по амфиболизированным двупироксен-плагиоклазовым кристаллическим сланцам [6]. Чарнокитоиды Пажминского массива и метасоматические — из эндербитовых полей, сформировавшиеся после эндербитов, не содержат буровато-зеленого амфибола. В целом процесс амфиболизации в средних и кислых гранулитовых образованиях {1} не имел широкого распространения и осуществлялся при региональной мигматизации и гранитизации после формирования эндербитовых парагенезисов под воздействием остаточных водных флюидов и, видимо, в основном до образования чарнокитоидов (Пажминский массив).

Автор тезисов не считает, что особенности гранулитовой амфиболизации, описанные для пород ГЭЧ комплекса оз. Нотозеро — оз. Ковдозеро, можно с легкой уверенностью переносить во все {1—9} исследуемые районы. Однако общая направленность процессов достаточно очевидна и находит прежде всего петрографическое подтверждение (рис. 3).

Рис. 3. Амфиболсодержащие двупироксеновые (а) и двупироксен-амфиболовые (б) кристаллические сланцы основного состава Каймы буровато-зеленого амфибола по пироксенам — начальная (а) и равновесные соотношения Нур, Срх и Hbl — средняя (б) стадии гранулитовой амфиболизации. Шлифы: K-2322-30 (а) и B-2341-14 (б), без анализатора. Пос. Вокнаволок [6]

В ГЭЧ комплексе {6} района оз. Вокнаволок В. А. Коншиным [8] была рассчитана реакция образования буровато-зеленого амфибола по ромбическому и моноклинному пироксенам в двупироксеновых диоритах — вокнаволокских эндербитах

(табл. 1). Полученный результат (табл. 1, № 9) привел данного автора к выводу о том, что для образования Hbl достаточно поступления в породы воды и это наиболее вероятно в постмагматическую регрессивную стадию преобразований пород. По нашим

наблюдениям в эндербитах пос. Вокнаволок выделяются двупироксеновые (Нур + Срх + Pl + Qtz) безамфиболовые парагенезисы и незначительная локальная их амфиболизация [6]. Приведенный В. А. Коншиным расчет подтверждает описанные выше для ГЭЧ комплексов оз. Нотозеро — оз. Ковдозеро и оз. Керчуг закономерности и условия гранулитовой амфиболизации в породах среднего состава (Pl = 40% An). Данные исследований свидетельствуют о формировании Hbl в эндербитах пос. Вокнаволок действительно после становления их магматических парагенезисов, при завершении процессов изофациальной амфиболизации, и с участием остаточных водных флюидов [6].

Двупироксен-амфиболовые кристаллические сланцы являются главной составной частью основных гранулитов практически всех районов исследований [7]. Амфиболиты гранулитовой фации, образованные по ним, как известно, также наблюдаются в ГЭЧ комплексах: губы Поньгомы — п-ов Поньгомнаволок Белого моря {4}, пос. Вокнаволок {6}, оз. Тулос {7}, ЮВ части Онежского озера {9}, где широко распространены эндерби-

- 1. Король Н. Е. Гранулиты и эндербиты района оз. Керчуг // Операт.-информ. материалы «Вопросы геологии и петрологии докембрийских комплексов Карелии». Петрозаводск, 1979. С. 17–26.
- 2. Володичев О. И., Коншин В. А., Король Н. Е. Геология и петрология гранулитовых и интрузивных эндербитчарнокитовых комплексов архея // Гранулитовые и мигматитовые комплексы Карелии и их роль в формировании земной коры Балтийского щита. Отчет по теме 67. Т. І. Фонды КарНЦ РАН. Петрозаводск, 1985. 206 с.
- 3. *Володичев О. И.* Беломорский комплекс Карелии (петрология и геология). Л., 1990. 245 с.
- 4. *Король Н. Е.* Метаморфическая эволюция гранулитового комплекса Северной Карелии: Дис. ... канд. геол.-минер. наук. М., 1990. 346 с.
- 5. Володичев О. И., Король Н. Е. Гранулит-эндербитчарнокитовые комплексы Карелии // Тез. докл. между-

ты мигматитовых субкомплексов и образующие поля и массивы.

Очень незначительная амфиболизация характерна для двупироксеновых кристаллических сланцев по метабазальтам на п-ове Вичаны оз. Кереть {3}. Жилы и небольшие тела эндербитов развиты только на п-ове Мундиннаволок этого озера {3}. Здесь, кроме двупироксеновых, наблюдаются двупироксен-амфиболовые кристаллические сланцы. В перекристаллизованных метаандезитах — двупироксен-плагиоклазовых кристаллических сланцах этого же района наблюдается слабая амфиболизация. Незначительно присутствует наложенная Hbl (каймы по ромбическому и моноклинному пироксенам) в средних гранулитах губы Поньгомы {4}.

Описанная выше гранулитовая амфиболизация в районах оз. Нотозеро — оз. Ковдозеро, оз. Керчуг, пос. Вокнаволок является определяющим и несомненно очень значимым процессом в метаморфической эволюции ГЭЧ комплексов и требует дополнительного детального изучения в других районах их развития.

нар. совещ. «Докембрий Северной Евразии». СПб., 1997. С. 22–23.

- 6. Король Н. Е. Метаморфическая эволюция архейских гранулит-эндербит-чарнокитовых комплексов Карелии и Центральной Финляндии // Автономный раздел отчета по теме 158 «Эндогенные режимы метаморфизма в различных геодинамических обстановках докембрия Карелии». Фонды КарНЦ РАН. Петрозаводск, 2003. 364 с.
- 7. *Король Н. Е.* Основные гранулиты Карелии и Центральной Финляндии // Геология и полезные ископаемые Карелии. Вып. 8. Петрозаводск, 2005. С. 18–28.
- 8. Коншин В. А. Геология и метаморфизм района оз. Верхнее Куйто Тоухтуринъярви (Вокнаволокский блок, Зап. Карелия) // Ранний докембрий Карелии. Петрозаводск, 1987. С. 70–89.

ОБ АМФИБОЛАХ ЭКЛОГИТОВЫХ ПОРОД РАЙОНА с. ГРИДИНО

Т. И. Кузенко

Институт геологии Карельского НЦ РАН, Петрозаводск; volod@krc.karelia.ru

Эклогитовые породы включают собственно эклогиты и продукты их ретроградного преобра-

В районе с. Гридино, охватывающем побережье Белого моря и прилегающие острова, в структуре Беломорского подвижного пояса (БПП) выявлены эклогиты и их преобразованные разновидности трех возрастных групп. Это архейские (AR) эклогиты с установленным U-Pb методом по цирконам из симплектитовых апоэклогитов возрас-

том 2720 ± 8 млн лет [1, 2], эклогиты архей-протерозойского (AR-PR) возраста (2,7–2,45 млрд лет) и палеопротерозойские (PR) — с изотопным возрастом $2416,1\pm1,3$ млн лет [3]. В статье приводится обзор составов амфиболов эклогитовых пород этих возрастных групп по данным 63 микрозондовых определений (табл. 1).

Архейские эклогитовые породы обнаружены в Гридинской тектонической зоне, где являются обломочной составляющей мигматизированного