УСЛОВИЯ ОБРАЗОВАНИЯ ЗОЛОТОРУДНЫХ МЕСТОРОЖДЕНИЙ И ПРОЯВЛЕНИЙ В ДОКЕМБРИИ КАРЕЛЬСКОГО КРАТОНА

Л. В. Кулешевич

Институт геологии Карельского НЦ РАН, Петрозаводск; kuleshev@krc.karelia.ru

Золоторудные проявления и небольшие месторождения в докембрии Карельского кратона и его обрамления на территории Карелии и Финляндии формировались в широком интервале температур и относятся к гипо- и мезотермальным, с отложением золота преимущественно в условиях средних температур, независимо от фации метаморфизма. Их формирование связано с гидротермально-метасоматическими изменениями пород, образованием кварцевых и карбонат-кварцевых жил. Основные типы золоторудных и золотосодержащих проявлений представлены золото-сульфидной и золотокварцевой рудными формациями и разнообразными минеральными типами, среди которых доминируют золото-пиритовый, золото-арсенопиритовый (или золото-бертьерит-арсенопиритовый), золотополисульфидный в ассоциации с висмуто-теллуридами и молибленитом. Околорудные и околожильные изменения, образовавшиеся при резком снижении температуры и давления в условиях растяжения и приоткрывания трещин, представлены березитами, лиственитами, гумбеитами, кварц-серицитовыми метасоматитами или пропилитами.

Условия формирования вкрапленной и прожилково-вкрапленной минерализации небольших месторождений, проявлений и околорудных метасоматитов оценивались по минеральным парагенезисам рудных и нерудных минералов, арсенопиритовому, пирит-пирротиновому, хлоритовому, гранат-амфиболовому и другим геотермометрам и данным, полученным при изучении газово-жидких включений и опубликованным в литературе. Исследования флюидных включений проводились методами декрепитации и гомогенизации в кварце [1, 2]. Сводка по условиям образования основных формационных типов руд некоторых объектов Карелии приведена в таблице.

Температурные условия формирования группы золотосодержащих руд колчеданного семейства и, в том числе метаморфизованных стратифицированных малозолотоносных колчеданов в архейских зеленокаменных поясах, оцениваются в 480—280 °С (табл. 1, № 1—2) [3, 4]. Золото-колчеданно-полиметаллические руды Северо-Вожминского проявления, секущие вмещающие толщи и дайку габбро-диабазов, отлагались в интервале 390—315 °С (385 °С — по арсенопириту) [4, 5]. Температура минералообразования опускалась до 80 °С — условий существования низкотемпературной полиморфной модификации халькозина и ниже (образование карбонатов меди). Золото на этом рудопроявлении установлено в участках, обогащенных халькопиритом.

В зеленокаменных поясах Карелии наиболее широко распространены золото-сульфидный и золото-сульфидно-кварцевый рудно-формационные типы (золото-пиритовый, золото-арсенопиритовый, золото-бертьерит-арсенопиритовый или те же минеральные типы с кварцем), приуроченные к зонам сдвиговых деформаций, рассланцевания и метасоматического изменения пород самого разнообразного состава. Рудная минерализация локализуется в ослабленных зонах дислокационных метаморфических преобразований различных фаций, обычно выделяемых по метасоматическим парагенезисам, образовавшимся в условиях повышенных давлений. Минеральные ассоциации околорудных и околожильных измененных пород, непосредственно сопровождающие рудную минерализацию, обычно не превышают условий зеленосланцевой и эпидот-амфиболитовой фации и относятся к пропилитам, березитам-лиственитам или кварц-серицитовым метасоматитам. Представителями этого рудно-формационного типа являются такие небольшие позднеархейские месторождения и проявления, как Рыбозеро, Золотые Пороги, Педролампи, Южно-Костомукшское и многие другие.

На месторождении Рыбозеро в золотосодержащих колчеданных рудах залежи 1 выделение арсенопирита и пирита началось близко одновременно при температуре 400—350 °C. Температура рудообразования снижалась до 270 °C — выделение сульфидов полиметаллической ассоциации. В хлорит-тальк-карбонатных сланцах, лиственитах и березитах залежи 2 пирит отложился при Т 375—385 °C [4, 8].

На участке Золотые Пороги рудная минерализация представлена несколькими минеральными типами: золото-халькопирит-пиритовым в лиственитах и березитах, золото-арсенопиритовым и золотобертьерит-арсенопиритовым прожилковым. В последнем помимо бертьерита присутствуют антимонит, самородная сурьма, джемсонит [9]. Образование арсенопирита (450-405 °C) и антимонита при избытке серы, совместное выделение пирротина и бертьерита позволяют считать за возможную максимальную температуру прожилковой минерализации — 500—496 °C. Образование пирита в лиственитах и березитах происходило при снижении температуры до 385-340 °C (пирит) и одновременном привносе серы, очевидно, за счет метаморфизма колчеданных залежей, широко распространенных на участке. Выделение сфалерита и халькопирита происходит близко одновременно около 260 °C.

Условия образования некоторых золоторудных объектов в докембрии Карелии и Финляндии

$N_{\overline{0}}$	Рудно-формационный и (минеральный) тип	Проявление	Условия образования	Геотермометр, ссылка
1	Золотосодержащий колчеданно-полиметал- лический (галенит-сфалерит-халькопирит- пиритовый)	Р-е Северо- Вожминское	385; 390–315 <271; <83	По арсенопириту, по пириту [4, 5, 6]. Распад Cu_5FeS_4 на борнит и халькозин, образование дигенита [7]
2	Золотосодержащий колчеданный (пирротин-пиритовый) в вулканогенно-осадочных толщах	Р-е Хаутова- арское	480–325; 400–100 (1); 300–220 (2); 350–300	По соотношению Со в пирротине и пирите [3]. Декрепитация г/ж включений в сульфидах (1) и кварце (2) [3]. Приближенно по сфалериту
3	Золото-сульфидный: золотосодержащие колчеданы (залежь 1) и золото-пиритовый в лиственитах и березитах (залежь 2)	М-е Рыбозеро	400–350 (1); 385–375 (2)	По Ктэдс пиритов [4, 8]
4	Золото-сурьмяно-мышьяковый (золото-бертьерит-арсенопиритовый) в шир-зоне	Р-е Золотые Пороги	405–450; 370– 345; 260; <500–496; 300–220; <282	По арсенопириту [6, 9]. По Ктэдс пиритов [4] и приближенно по сфалериту. Бертьерит, антимонит. Декрепитация г/ж включений в кварце и карбонате [10]. Устойчивость в системе $Ni_{1-x}S$ полидимит+миллерит [7]
5	Золото-сульфидный и золото-сульфидно- кварцевый (пиритовый) в шир-зоне	М-е Педро- лампи	390–350; 340, 240	По хлориту [11]. Декрепитация г/ж включений в кварце [2]
6	Золото-арсенидно-кварцевый (золото, арсенопирит, пирротин, халькопирит) в полосчатой железистой формации	Р-е Южно- Костомукш- ское	490	По арсенопириту [1, 6]. Ассоциация арсенопирита с пирротином и леллингитом
7	Золото-сульфидно-кварцевый и золото- кварцевый в диоритах—гранит-порфирах и шир-зонах	М-е Таловейс	370–130; 360–164; 380	Декрепитация и гомогенизация г/ж включений в кварце [2, 1]. По соотношению Со в халькопирите и пирротине
8	Золото-полисульфидный, редкометалльный (золото-халькопирит-сфалеритовый с Ві-Те и молибденитом) в ассоциации с порфировыми дайками и гранитными телами	М-е Лобаш-1	550-450; 510; 520 (1), 405-357 (2); 400-228; 306-240; 270; 540-525; <145	Грейзенизация. Околодайковые изменения, гранат-роговообманковый геотермометр. По хлориту: 1 — биотититы, 2 — эпидотизированные габбро [12]. Гомогенизация г/ж включений в кварце [13]. По соотношению Со в пирротине и пирите и сфалериту. Ві-Те минералы. Устойчивость гессита [7]
9	Золото-медно-вольфрам-молибденовые (золото-шеслит-халькопирит-молибденитовые с Ві-Те, сфалеритом, галенитом), ассоциирующие с гранит-порфирами	Р-е Ялонвара	550—450; ниже 405-415, ~270; 200	Грейзенизация. Приближенно по сфалериту. Распад халькопирит-кубанит [14].
10	Золото-редкометалльные (золото-шеелит- халькопирит-сфалерит-Ві-Те, с молибдени- том), ассоциирующие с тоналитами, порфи- ровыми дайками и в шир-зонах	М-е Корви- лансуо и др. (зеленокамен- ный пояс Хат- ту, Финлян- дия)	450-370; 415-280; 500-360; 540-525, <425; 350-265, 150; 135-125; <50	По арсенопириту. Гомогенизация г/ж включений [6, 15]. По изотопам [16]. Устойчивость Ві-Те и калаверита [7]. Приближенно по сфалериту. Устойчивость макинавита; гессита с петцитом [7]
11	Золото-сульфо-арсенидно-кварцевый (золо- то-пирит-халькопирит-сульфосольно-арсе- нопиритовый) в гранит-порфирах и шир-зо- нах	Р-е Пякюля	491; 540-522; <518; <400; 280; <145; 290-260	По арсенопириту [6, 17] Устойчивость Ві- Те; бурнонита, антимонита при избытке серы; шульцита и твиннита; гудмундита; гессита [7]. Приближенно по сфалериту
12	Золото-сульфо-арсенидно-кварцевый (золото-пирит-халькопирит-сульфосольно-арсенопиритовый, с Bi-Te) в гранит-порфирах и шир-зонах в их ореоле	М-е Осикон- мяки (Раахе- Ладожская зо- на, Финлян- дия)	500-370; 496-400; <500 <373; 300; 200	По арсенопириту разных месторождений [6, 18]. Устойчивость Ві-Те, антимонита при избытке S и неограниченной смесимости с Ві-Те, мальдонита, дискразита, распад халькопирита и кубанита [7]
13	Золото-кварцевый (золото с Bi-Te-Se) в шир-зонах в базальтах	М-е Майское, Сев. Карелия	<540; <445; 346–333; 270–140	Устойчивость Ві-Те; костибита [7]. По хлориту [11]. Гомогенизация г/ж включений [19, 20]
14	Золото-сульфидно-кварц-баритовый в зонах изменения ультраосновных пород	М-е Пахто- ваара	<461; <379; 310–260; 200; 150	Виоларит по пентландиту; миллерит [7]. Хлорит жильного и околожильного пара- генезиса [21]. Халькопирит+кубанит. Об- разование клаустолита (PbSe) [7]
15	Золото-кобальт-сульфидно-урановый в рас- сланцованных метаосадках	М-я пояса Куусамо	310-270	Березитизация, серицитизация и отложение сульфидов и золота [16]
16	Благороднометалльно-медно-уран-ванадиевый в зонах изменения в черных сланцах	Р-я Падмин- ской группы	400–300 (1); 300–270 (2); 305–245 (2); 250–230 (3); 150–120 (3); 150–100 (4)	Эгиринсодержащие метасоматиты (1), альбититы (2), карбонатные жилы в них (3), поздние прожилки (4) [22, 23]

В условиях температур 300—270 °С формируются березит-лиственитовые изменения, широко развитые в разных породах на участке Золотые Пороги [10]. Они сопровождаются крупными кристаллами пирита, халькопиритом, золотом, а в ультраосновных породах — миллеритом, полидимитом ($T=282\,^{\circ}$ C), Sb-As минералами, самородным серебром. Золото тонкодисперсное, выделяется после халькопирита.

Месторождение Педролампи представлено двумя типами руд — золото-пиритовым и золотополисульфидным-кварцевым с самородным золотом, платиноидами и сложными соединениями. Для этого рудного объекта характерно развитие вкрапленности крупнокристаллического кубического пирита в интенсивно измененных (лиственитизированных) основных туфах и конгломератах и кварцевых жил, сопровождающихся серицитом, хлоритом, турмалином в шир-зоне субмеридионального простирания. Температура образования лиственитов и околожильных изменений по хлориту оценивается в 350-390 °C. Декрепитация газово-жидких включений в кварце происходит в широком интервале температур, с максимумами около 340 и 240 °C [2], близкими к выделению халькопирита и золота.

Наиболее значительные золото-сульфиднокварцевые и золото-кварцевые рудные объекты Костомукшской структуры генетически связаны диорит-гранит-порфировым таловейсским комплексом. Они локализуются в штокверковых зонах в интрузиях и дайках либо вблизи их контактов в зонах рассланцевания и прожилкования. На участке Таловейс к субмеридиональной сдвиговой зоне приурочена Главная кварцевая жила. Флюидный режим рудоотложения этого участка менялся от слабокислотного (углекислотно-водного) с участием сероводорода на раннем этапе (березиты с золото-сульфидной вкрапленно-прожилковой минерализацией) до водно-углекислотного и водно-солевого от ранней к поздней стадии второго этапа гидротермального процесса (образование золото-кварцевой жилы). Для ранних этапов березитизации характерно присутствие во флюиде CaCl₂. При формировании Главной кварцевой жилы установлен перепад давлений (от 7 кбар до 7 бар) и температур (от 360 до 180 °C) [1]. Температура отложения золота не превышала условий формирования березитов, что характерно для многих мезотермальных месторождений более молодых металлогенических эпох. Формирование жил участка Восточного сопровождалось околожильной грейзенизацией и молибленитовой минерализацией.

Пространственно сближенно с микропорфирами (геллефлинтами) в зонах рассланцевания вблизи их контактов с полосчатой железистой толщей в карьере Костомукшского железорудного месторождения размещается золото-арсенопиритовая минерализация (Центрально- и Южно-

Костомукшского проявлений). Температура гомогенизации газово-жидких включений в кварце из прожилков, содержащих гнезда арсенопирита, составляет 540—375 °C. Прожилки формировались в условиях снижения давления от 4,5 до 2,5 кбар [1]. Начальная температура образования рудной минерализации на Южно-Костомукшском участке оценивается в 490 °C (по арсенопириту в парагенезисе с леллингитом). При снижении температуры выделялись пирротин, сфалерит, халькопирит, галенит, золото.

Золото-полисульфидный, в том числе редкометалльный, и Au-Cu-W-Mo рудно-формационные типы ассоциируют с малоглубинными интрузивными телами гранодиоритового состава, порфировыми дайками и телами гранит-порфиров. Оруденение в них представлено золотом, электрумом, халькопиритом, сфалеритом, галенитом, разнообразными Ві-Те в одних типах и молибденитом, шеелитом, молибдошеелитом и некоторыми более редкими минералами в других типах. Минерализация находится в разных сочетаниях и соотношениях. Формирование руд и околорудных изменений месторождения Лобаш-1 происходило в широком интервале температур: от T = 550-357 °C – условий грейзенизации, образования биотититов, гранат-амфиболовых контактовых парагенезисов, до $T = 306-270 \, ^{\circ}\text{C}$ – образования среднетемпературных кварц-карбонатных жил с полиметаллической минерализацией, и опускалась до 145 °C (выделение гессита и электрума) [12].

Золоторудная минерализация участка Ялонвара и месторождений зеленокаменного пояса Хатту на финской территории формировалась в условиях снижения температуры: от начального процесса грейзенизации до образования кварцевых жил с арсенопиритом, висмутотеллуридами, сульфидами полиметаллов, шеелита и золота [14, 15]. Температура при этом снижалась от 540-445 °С до устойчивости гессита и петцита (50 °С). Температура гомогенизации первичных и вторичных газово-жидких включений в кварце месторождения Куйттила находится в интервале 346-117 °С. Соленость растворов на месторождениях пояса Хатту составляла 6-22% NaCl-экв. Поступление растворов носило пульсационный характер. Наиболее значительное отложение золота произошло после образования сульфидов полиметаллов.

В протерозойских месторождениях Карелии и проявлениях свекофеннид, относящихся к золото-сульфидному рудно-формационному типу, связанных с порфировыми интрузиями и обычно локализованных в зонах рассланцевания, ведущим минеральным типом является золото-сульфосольно-арсенопиритовый. В рудах Раахе-Хапаярвинской площади и Северного Приладожья присутствуют арсенопирит, золото, халькопирит,

пирит, сульфосоли, мальдонит, дискразит, антимонит, гудмундит и другие соединения Bi-Te-Sb [17, 18]. Золото выделяется как на более высокотемпературной стадии в срастании с арсенопиритом, так и самостоятельно в самородном виде, совместно с сульфосолями. Температура растворов на этих рудных объектах изменяется от 490 до 140 °C. На протяжении всего процесса рудоотложения сохранялся режим дефицита серы при высокой концентрации Аs и нарастании Bi, Te, Sb в конце процесса, поступавших с растворами в места разгрузки.

Для золоторудных проявлений и месторождений северо-западной Карелии в Куолаярвинской структуре и на территории финской Лапландии [24], приуроченных к зонам сдвиговых деформаций, характерны разнообразные типы рудной минерализации. При этом для них не устанавливается связь с гранитоидами.

На месторождении Майском (руч. Вуосна, Карелия) околожильные изменения в основных вмещающих породах представлены пропилитами. Вблизи эпидот-кварцевых и кварцевых прожилков сначала образовались альбит, хлорит, актинолит и эпидот, затем микроклин, асболан и карбонат. Формирование пропилитов и околожильных парагенезисов происходило при 346-333 °C (по хлориту). К этому температурному интервалу близки условия образования пирротина и некоторых сульфосолей. Висмутотеллуриды ранней ассоциации, по-видимому, все-таки выделялись почти одновременно с ними, а не при высоких температурах. Температура гомогенизации первичных и вторичных включений в главной кварцевой жиле составляет 270-140 °C. При T = 200-140 °C и низком давлении (P = 940-830 бар) из хлоридных растворов, обогащенных CaCl₂, происходит отложение золота [20, 21]. Специфика месторождения - появление редких Se-содержащих минералов.

Группа небольших золото-кобальт-медносульфидных-урановых месторождений рудного поля Куусамо (Финляндия) и подобных проявлений в Панаярвинской структуре на карельской территории сформировалась при $T=310-270\ ^{\circ}C\ [16]$.

Весьма необычным является месторождение Пахтоваара в СЗ Финляндии, на котором золото выделяется в кварц-карбонат-баритовых прожилках в измененных ультраосновных породах

- 1. *Кулешевич Л. В., Васюкова О. В., Фурман В. Н.* Минералогия и условия формирования золоторудных проявлений Костомукшской структуры по данным газовожидких включений // Записки РМО. 2005. № 5. С. 19—31.
- 2. Белашев Б. З., Кулешевич Л. В. Декрепитация газово-жидких включений в кварце из различных генетических типов золоторудных проявлений Карелии // Геология и полезные ископаемые Карелии. Вып. 8. Петрозаводск, 2005. С. 89—94.

[21]. На этом месторождении происходит замещение пентландита виоларитом и затем миллеритом, обычно сосуществующих ниже 461 и 379 °C. Хлорит околожильного и жильного парагенезисов образуется при T=310-260 °C. Выделение золота и редкого селенида — клаустолита происходит около 200–150 °C.

Благороднометалльно-медно-уран-ванадиевая минерализация в черных сланцах Онежской структуры (проявления Падминской группы) формировалась в интервале 400-120 °C. Щелочные эгиринсодержащие метасоматиты, альбититы и карбонатные жилы в них возникли при Т = 400-245 °C [22, 23]. Образование слюдитов (T = 300-200 °C) завершилось ураново-рудной ассоциацией (T = 250-230 °C), отложением кварцкарбонатных прожилков с селенидами (Т = 150-120 °C) и золотом. Пострудная ассоциация отлагалась при $T \le 150-100$ °C. Появление же золота в альбититах в ассоциации с полиметаллами связано с поздней стадией отложения сульфидов полиметаллов, серебра и др. (например, с халькопиритом на рудопроявлении Шуезерском). Температура при этом снижается от 300 °C (предрудные изменения пород) до образования халькопирита, халькозина (200-90 °C) и медных карбонатов.

Таким образом, приведенные данные позволяют утверждать, что рудная минерализация, сопровождающая золото в архейских и протерозойских структурах, формировалась в широком интервале температур: от 490-400 °C (выделение арсенопирита) до 145-50 °C (образование гессита, петцита). Формирование золото-кварцевых жил происходило в интервале температур 360-180 °C с составом флюида, эволюционирующим от CO_2 - CH_4 - H_2O -солевого до H_2O -солевого. В золото-кварцевых жилах и золото-сульфиднокварцевых прожилках золото выделялось в нескольких генерациях. В золото-сульфидных прожилково-вкрапленных рудах, содержащих пирит и арсенопирит, оно отлагалось в две стадии: в ассоциации с арсенидами, сульфидами (ранняя) и самостоятельно, с максимальным накоплением, после висмутотеллуридов, халькопирита и сульфосолей, в интервале 300-100 °C. В свекофеннидах и зонах сдвиговых деформаций в протерозойских структурах в пределах Карельского кратона золото появляется совместно с урановой и халькопиритовой минерализацией в условиях средних и низких температур в интервале 250-90 °C.

- 3. *Рыбаков С. И.* Серноколчеданные месторождения Карелии. Л., 1978. 192 с.
- 4. Кулешевич Л. В., Белашев Б. З. Колчеданное оруденение Восточной Карелии (опыт изучения состава и электрофизических свойств пиритов) // Геология и полезные ископаемые Карелии. Вып. 1. Петрозаводск, 1998. С. 57—72.
- 5. *Кулешевич Л. В., Фурман В. Н., Федюк З. Н.* Перспективы золотоносности Каменноозерской структуры Сумозерско-Кенозерского зеленокаменного пояса

// Геология и полезные ископаемые Карелии. Вып. 8. Петрозаводск, 2005. С. 50-67.

- 6. Скотт С. Д. Использование сфалерита и арсенопирита для оценки температур и активности серы в гидротермальных месторождениях // Физико-химические модели петрогенеза и рудообразования. Новосибирск, 1984. С. 41—49.
- 7. Справочник определитель рудных минералов в отраженном свете. М., 1988. $504\ c.$
- 8. *Кулешевич Л. В*. Минералогия докембрийского золоторудного месторождения Рыбозеро (Восточная Карелия) // Записки РМО. 2003. № 6. С. 34—44.
- 9. *Кулешевич Л. В., Фурман В. Н., Коротаева Н. Н.* Редкая сурьмяная минерализация докембрийского рудопроявления Золотые Пороги в Восточной Карелии // Записки РМО. 1998. № 6. С. 89–98.
- 10. *Шемякина Н. М.* Геохимия региональных низкотемпературных метасоматитов восточной части Балтийского щита: Автореф. дис. ... канд. геол.-минер. наук. 1983. 23 с.
- 11. Cathelineau M., Nieva D. A chlorite solid solution geothermometer: Los Azufres (Mexico) geothermal system // Contrib. to Mineral. and Petrol. 1985. 91. P. 57–76.
- 12. *Кулешевич Л. В., Тытык В. М., Коротаева Н. Н.* Минералогия руд и околорудно-измененных пород золото-полиметаллического месторождения Лобаш-1 (Карелия) // Записки РМО. 2004. № 4. С. 39–51.
- 13. Покалов В. Т., Семенова Н. В. Лобаш первое крупное молибденовое месторождение докембрийского возраста (Карелия) // Геология рудных месторождений. 1993. № 3. С. 262—270.
- 14. *Иващенко В. И.*, *Лавров О. Б.* Магматогенно-рудная (Мо, W, Cu, Au) система ялонварского вулканоплутонического комплекса архея Карелии. Петрозаводск, 1994. 128 с.
- 15. Geological development, gold mineralization and exploration methos in the Late Archean Hattu Shist belt, Ilomantsi, eastern Finland. Ed. by Pekka A. Nurmi and

- P. Sorjonen-Ward // Geol. Survey of Finland. Sp. paper 17. Espoo, 1993. 386 p.
- 16. *Eilu P.* Fingold a public database on gold deposits in Finland // Geol. Survey of Finland. Rep. of Invest. 146. Espoo, 1999. 224 p.
- 17. Иващенко В. И., Ручьев А. М., Лавров О. Б. и др. Эндогенная золоторудная система Суйстамского плутонического комплекса (Северное Приладожье) // Геология и полезные ископаемые Карелии. Вып. 7. Петрозаводск, 2004. С. 127—146.
- 18. Geological setting and characteristics of the tonolite-hosted Paleoproterozoic gold deposit at Osikonmaki, Rantasalmi, southeastern Finland. Ed. O. Kontoniemi, P. Nurmi // Geol. Survey of Finland. Espoo, 1998. 119 p.
- 19. Вольфсон А. А., Русинов В. Л., Крылова Т. Л., Чугаев А. В. Метасоматические преобразования докембрийских метабазитов Салла-Куолаярвинского грабена в районе золоторудного поля Майское, Северная Карелия // Петрология. 2005. Т. 13, № 2. С. 179—206.
- 20. Сафонов Ю. Г., Волков А. В., Вольфсон А. А. и др. Геолого-генетические особенности месторождения золота Майское (Северная Карелия): Отчет по гранту. М., 2001. С. 1—37.
- 21. *Korkiakoski E. A.* Geology and geochemistry of the metakomatiite-hosted Pahtavaara gold deposit in Sodankyla, northern Finland, with emphasis on hydrotermal alteration // Geol. Survey of Finland. Bul. 360. Espoo, 1992. 96 p.
- 22. Билибина Т. В., Мельников Е. К., Савицкий А. В. О новом типе комплексных руд в южной Карелии // Геология рудных месторождений. 1991. № 6. С. 3—13.
- 23. Леденева Н. В., Пакульнис Г. В. Минералогия и условия образования уран-ванадиевых месторождений Онежской впадины (Россия) // Геология рудных месторождений. 1997. Т. 39, № 3. С. 258—268.
- 24. Harkonen I., Keinanen V. Exploration of structurally controlled gold deposits in the central Lapland greenstone belt // Geol. Survey of Finland. Current research 1988. Ed. by S. Autio. Espoo. 1989. Spec. Paper 10. P. 79–82.

ОРГАНИЗАЦИЯ ХРАНЕНИЯ КОЛЛЕКЦИЙ И ДИАГНОСТИКА МИНЕРАЛОВ В МУЗЕЕ ИНСТИТУТА ГЕОЛОГИИ КАРЕЛЬСКОГО НЦ РАН

Л. В. Кулешевич, И. С. Инина, А. А. Парамонова, В. Г. Пудовкин

Институт геологии Карельского НЦ РАН, Петрозаводск; kuleshev@krc.karelia.ru

Организация электронной системы учета образцов горных пород, минералов и палеонтологических коллекций была предпринята в Институте геологии Карельского НЦ РАН с момента начала реставрации Музея геологии докембрия (с 2000 г.). В этой работе приняли участие сотрудники музея, а также А. А. Парамонова, И. С. Инина и студенты-геологи ПетрГУ (М. Подкасик, Е. Патрикеева) под руководством Л. В. Кулешевич.

Коллекция музея была разделена на музейную и рабочую для обучения студентов. Музейная минералогическая коллекция включает экспозицию нижнего зала, выставленную для демонстрации, и запасную экспозицию («запасник» верхнего зала). Образцы минералов музейной коллекции по

нижнему залу были внесены в электронный каталог — базу данных каменного материала музея, первоначально разработанную А. Н. Никитиным в программе Foxpro, а затем модифицированную и упрощенную для работы в программе ACSES А. А. Парамоновой. Электронная база данных по учету каменного материала включает следующие систематические группы: 1 — минералы, 2 — палеонтологические образцы, 3 — горные породы и полезные ископаемые. База проста в применении, легко дополняется и расширяется, обладает поисковой системой по номеру, названию, автору и др. (табл. 1). Электронный каталог, организованный в ACSES, доступен для пользователей, внесение дополнительной информации и попол-