диафтореза и аккумуляции золота [3, 4]. Хотя гнейсы четвертой минеральной фации характеризуются увеличением содержания растворимого [5] и нерастворимого (табл. 3) УВ, а также золота [3, 4], эти компоненты распределяются в породе иначе по сравнению с гнейсом-2. Так, например, для гнейса- 4_3 установлена взаимообратная зависимость содержания графита и золота (\mathbf{r} Gr-Au = -0,553, $\mathbf{q}=0,90,\ \mathbf{n}=8$). В той же разновидности гнейсов намечается положительная корреляция содержания графита, платины и палладия. Их сопряженное концентрирование отмечалось и в пространственно связанных с пегматитами зонах изменения пород хетоламбинской толщи беломорид [8].

Материалы проведенного исследования позволяют аргументировать следующие выводы.

Гнейсы чупинской свиты являются низкоуглеродистыми породами, в которых УВ присутствует в растворимой и нерастворимой формах.

Большая часть УВ метаморфических разновидностей гнейсов имеет эндогенную природу и формируется в процессе полиэтапной тектоно-метаморфической переработки их протолита. Аккумуляция УВ в гнейсах отчетливо связана с двумя эта-

- 1. *Ручьев А. М.* О протолите северокарельских гнейсов чупинской свиты беломорского комплекса // Геология и полезные ископаемые Карелии. Вып. 2. Петрозаводск, 2000. С. 12—25.
- 2. Ручьев А. М. Подвижность редкоземельных элементов и возникновение европиевых аномалий при метаморфизме (на примере парагнейсов чупинской свиты, беломорский комплекс) // Геология и полезные ископаемые Карелии. Вып. 3. Петрозаводск, 2001. С. 99—106.
- 3. *Ручьев А. М.* Благородные металлы в гнейсах чупинской свиты (беломорский комплекс, Северная Карелия) // Геология и полезные ископаемые Карелии. Вып. 5. Петрозаводск, 2002. С. 47–58.
- 4. *Ручьев А. М.* Благородные металлы в гнейсах чупинской свиты (беломорский комплекс) // Геология и геодинамика архея: Материалы I Рос. конф. по проблемам геологии и геодинамики докембрия (27—29 сентября 2005 г.). СПб., 2005. С. 324—329.
- 5. *Бушев А. Г.* Геоэкологическое картирование мусковитовых месторождений по токсичным органическим веществам // Геоэкологическое картографирование:

пами аллохимических процессов, для которых характерен повышенный потенциал калия (образование минеральных фаций: гнейс-2 — в позднем архее и гнейс-4 — в раннем протерозое).

Содержание УВ в породах беломорского комплекса может использоваться как поисковый критерий благороднометалльного оруденения.

Золото-платиноидные проявления в гнейсах чупинской свиты, как уже отмечалось ранее [3, 4 и др.], могут рассматриваться в качестве новых объектов, наиболее близких к классу полигенных месторождений и рудопроявлений полиметалльной формации углеродсодержащих пород и продуктов их преобразования [9]. Для этой формации характерны так называемые «крупнообъемные» месторождения с невысоким содержанием (1,5-4,5-5 ppm), но большими запасами золота, промышленное значение которых постепенно возрастает [10]. Потенциальная возможность обнаружения рудопроявлений подобного типа, а также комплексных благороднометалльных в породах беломорского комплекса определяет необходимость их дальнейшего целенаправленного изучения.

Тез. докл. Всерос. науч.-практ. конф. Ч. II: Методы региональных геоэкологических исследований и картографирование. М., 1998. С. 161–163.

- 6. Богомолов О. Н., Бушев А. Г., Кудрин В. С. и др. Токсичные органические вещества в рудах твердых полезных ископаемых и их влияние на экологическую обстановку // Геоэкология. 1996. № 3. С. 113—123.
- 7. Углеродистое вещество в метаморфических и гидротермальных породах / Д. Х. Мартихаева, В. А. Макрыгина, А. Е. Воронцова, Э. А. Развозжаева. Новосибирск, 2001. 127 с.
- 8. Ахмедов А. М., Шевченко С. С., Симонов О. Н. и др. Новые типы проявлений комплексной благороднометалльной минерализации в зеленокаменных поясах позднего архея Карело-Кольского региона // Геология и геодинамика архея. СПб., 2005. С. 34—38.
- 9. Додин Д. А., Чернышов Н. М., Яцкевич Б. А. Платинометальные месторождения России. СПб., 2000. 735 с.
- 10. Гончаров В. И., Буряк В. А., Горячев Н. А. Крупнообъемные месторождения золота и серебра вулканогенных поясов // Доклады АН. 2002. Т. 387, № 5. С. 678—680.

МАНТИЙНЫЙ ДИАПИРИЗМ И ПРОБЛЕМА БИМОДАЛЬНОСТИ ДОКЕМБРИЙСКОГО МАГМАТИЗМА

А. П. Светов, Л. П. Свириденко

Институт геологии Карельского НЦ РАН, Петрозаводск; Sv@krc.karelia.ru

Традиционно на Фенноскандинавском щите принято граниты классифицировать как раннеорогенные, позднеорогенные и посторогенные, обосновывая таким образом существование

орогенного цикла. Ярким примером является свекофеннский орогенный цикл (Финляндия, Швеция). Палеовулканологические исследования одновозрастных раннепротерозойских (све-

кокарельских) вулкано-плутонических образований в различных структурно-формационных зонах (Центральная Карелия, Северное Приладожье) показали [1-3], что они идентичны и по интенсивности, и по условиям формирования. Вместе с тем в Центральной Карелии (Карельский геоблок) они слагают платформенный чехол, где отсутствуют проявления кислого магматизма, тогда как в пределах Свекофеннского геоблока они представляют собой базитовую ветвь разновозрастных бимодальных вулкано-плутонических серий. Та же ситуация наблюдается и при сопоставлении рифейских вулканогенно-осадочных образований на Свекофеннском геоблоке с одновозрастными образованиями Дальсландского геоблока [4]. Анализ этих ситуаций при первичном формировании докембрийской земной коры континентального типа позволил выделить геотектонический режим региональной гранитизации [5], в ассоциации с которым, как правило, происходит формирование разновозрастного бимодального магматизма. С этим режимом связано формирование гранитного слоя докембрийской континентальной земной коры, залегающего на протокоре древнее 3,5 млрд лет. Региональная метасоматическая гранитизация происходит под воздействием ареального мантийного флюидного потока, несущего в земную кору K, Rb, Ba и другие сопутствующие элементы. При этом происходит деплетирование мантии. На Карельском геоблоке бимодальный магматизм развит в позднем архее, на Свекофеннском - в раннем протерозое и на Дальсландском – в рифее. Следовательно, энергетическим источником проявления бимодального мантийно-корового магматизма служит недеплетированная мантия, поставляющая магму и флюидный поток, под совместным воздействием которых происходит плавление земной коры.

Выявлению региональных особенностей этих процессов способствовало изучение центров эндогенной магматической активности (ЦЭМА) и их надочаговых зон. ЦЭМА является палеовулканологическим выражением мантийно-корового диапира. Изучение бимодальности как позднеархейского магматизма, так и раннепротерозойского нами производилось на уровне вулкано-плутонических ассоциаций [5, 6], и были выявлены общие особенности состава магматических образований и эволюции магматизма. В малоглубинных условиях бимодальность основного мантийного и кислого корового магматизма геологически очевидна благодаря сопряженному проявлению, где одновозрастные габбро-базальтовые и риодацит-гранитовые вулкано-плутонические ассоциации пород образуют покровные, экструзивно-купольные и субвулканические фации. В глубинных условиях на уровне формирования коровых магматических очагов связь последних с базитовым магматизмом менее очевидна и доказывается геолого-геофизическими данными.

Как для позднеархейского, так и для раннепротерозойского бимодального вулкано-плутонизма в раннюю стадию развития диапира формируются две вулкано-плутонические ассоциации, где кислая ветвь представлена тоналит-плагиогранит-дацит-плагиориолитовыми сериями, а в завершающую стадию после региональной метасоматической гранитизации развиты плагиомикроклиновые граниты, которым свойственна латеральная геохимическая зональность от эпицентра диапира к его периферии. Рассмотрим эту эволюцию на примере Салминского ЦЭМА Северного Приладожья.

Образование диапира обеспечивается взаимодействием ядра и мантии Земли [7], поднятием флюидного потока до уровня верхней мантии и созданием области магмогенерации с приобретением ею плавучести за счет флюидизации. Формирующиеся таким образом диапиры представлены объемом разуплотненной мантии с включенным расплавом и трансмантийным флюидом.

Начало магматической активности связано с массовым излиянием платобазальтов одновременно в трех самостоятельных вулканических постройках исландского типа (Янисъярвинской, Кирьявалахтинской и Туливаранмякской). Последующий ливвийский базальтовый и пикрит-базальтовый вулкано-плутонизм пространственно тесно связан с людиковийским, но переместился в сторону центральной части диапира. С ним ассоциируют интрузивные пластово-силловые тела перидотитового и габбро-перидотитового состава, являющиеся интрузивными аналогами излившихся пород. С головной частью магматического диапира пространственно совпадает вулкано-плутоническая ассоциация базитового магматизма калевийской фазы, проявленная высокомагнезиальной и высокожелезистой сериями как в вулканической, так и в субвулканической фации. Железистой серии свойственны повышенные концентрации Na_2O , TiO_2 , P_2O_5 , BaO, SrO, а магнезиальной — NiO. Ликвация умеренно железистого толеитового расплава на две контрастные серии началась, как и в одновозрастных образованиях Карельского геоблока, в ливвии. Она объясняется условиями возрастающей неустойчивости неравновесной динамической системы в заключительную стадию развития [8]. В целом эволюция базитового магматизма при формировании мантийного диапира имеет антидромную направленность.

Первое проявление корового кислого магматизма в Северном Приладожье сопряжено с максимумом людиковийского мантийного вулкано-плутонизма и приурочено к Кирьявалахтинскому платобазальтовому вулканическому центру, образуя пояс разноглубинных тел тоналитов, плагиогранитов, некков и силлов камерно-инъекционного типа, плагиогранит-порфиров протяженностью около

12 км в зоне сдвиговых деформаций. В составе вулканитов Кирьявалахтинского вулканического центра местами содержатся лавовые потоки андезитов и дацитов. U-Pb изотопный возраст циркона из кислых вулканитов оценивается в 1,99 млрд лет [9]. Отмечаются также лавобрекчии, агломератовые туфы, кристаллокластические и витрокластические пепловые туфы кислого состава. Характерной особенностью химического состава пород кислой ветви бимодальной серии является высокое содержание АІ₂О₃, Nа₂О, СаО, что объясняется высоким содержанием плагиоклаза. Им также свойственны высокие концентрации Ва и Sr и низкие – K, Rb, Zr, Y, Nb. Их состав сопоставим с породами комплекса фундамента, которые, по-видимому, служили источником кислых расплавов [6].

Калевийский коровый вулкано-плутонизм центральной наддиапировой зоны, в отличие от людиковийской периферической, характеризуется чрезвычайным разнообразием форм проявления и состава. Широким распространением пользуются породы среднего состава (диориты, эндербиты). Изотопный возраст циркона из эндербитов этой зоны составляет $1881,4 \pm 6,4$ млн лет [10], что находится в соответствии с возрастом ладожской серии, в которой они залегают. Наряду с базитовыми, здесь картируются лавовые потоки среднего и кислого составов, лавобрекчии и агломератовые туфы. Эпицентр диапира характеризуется разогретостью земной коры, где региональный метаморфизм достигает гранулитовой фации и наблюдается дегидратационное плавление. Близость изотопного возраста магматических пород и гранулитов [11] согласуется с нашим обоснованием [12] генетической связи гранулитового метаморфизма с Салминским ЦЭМА и объясняет наблюдаемое здесь смешение базитовой и коровой кислой магм и развитие пород среднего состава.

В завершающую стадию свекокарельского диапира Северного Приладожья проявился гранитный магматизм S-типа в виде небольших интрузий плагиомикроклиновых гранитов умеренной глубинности с инъекционным характером контактов (массивы Терву, Путсари, Маткасельский и др.). Ему предшествовала региональная метасоматическая гранитизация, воздействовавшая преимущественно на осадочные породы. Время внедрения гранитов массива Терву оценивается в 1858,8 ± 2,1 млн лет, а их жильной фации — в 1844,6 ± 2,1 млн лет [11].

В отличие от охарактеризованных бимодальных вулкано-плутонических ассоциаций ранней стадии развития диапира, где бимодальность четко прослеживается на уровне вулканических, субвулканических и интрузивных фаций, плагиомикроклиновые граниты средней глубинности заключительной стадии не обнаруживают четкой геологической связи с базитовым магматизмом и обычно, не только в Северном Приладожье, но и на территории Финляндии и Швеции, классифици-

руются как позднеорогенные. Генетическая связь этих гранитов с мантийным диапиром нами доказывается латеральной геохимической зональностью от эпицентра диапира к его периферии. Она обусловлена спецификой флюидного режима и выражается в характере регионального магнитного поля как в пределах Северного Приладожья, так и на Карельском геоблоке с развитием позднеархейской метасоматической гранитизации и гранитообразования. В эпицентре диапира развито региональное положительное магнитное поле, сменяющееся к периферии регионально-отрицательным.

В центральной наддиапировой зоне высококалиевые лейкограниты характеризуются повышенной щелочностью, повышенным содержанием Ва и низким содержанием редких металлов (табл.). При метасоматической гранитизации либо при дегидратационном плавлении вместо биотита кристаллизуются магнетит и калишпат, что свидетельствует о повышении fo2. Таким образом, формирующийся в эпицентре диапира, отличающемся прогретостью земной коры, высокобариевый тип гранитов и мигматитов (см. табл.) отличался «сухостью» флюидного режима. В краевой части диапира в области регионально-отрицательного магнитного поля как на Карельском геоблоке, так и в Северном Приладожье метаморфизм является более низкотемпературным, чем в центральной части, а присутствие двуслюдяных биотит-мусковитовых гранитов свидетельствует об их водонасыщенности. Здесь развит рубидиевый тип гранитов (см. табл.). Типичным представителем подобного типа гранитов являются Маткасельские редкометалльные граниты. Для подобных гранитов характерно высокое содержание Al_2O_3 , P_2O_5 , Li, Rb, Cs и низкое содержание Ва, Sr, Zr, Y (см. табл.). Это типичные граниты S-типа. Учитывая сопоставимость геохимических типов гранитов разновозрастных мантийных диапиров при сопоставимости их химических составов, следует констатировать их связь с мантийным диапиром, поставляющим в земную кору базитовую магму, являющуюся главным энергетическим источником при плавлении земной коры. Энергоносителем является также мантийный флюидный поток, несущий калий и сопутствующие элементы. Об отсутствии орогенных условий при кристаллизации рассматриваемых гранитов свидетельствуют также купольный характер структур и пологое залегание гранитизированного вулканогенно-осадочного чехла. В этом заключается главная специфика раннего докембрия - периода первоначального формирования земной коры континентального типа, где базитовый вулканизм осуществляется в мелководных седиментационных бассейнах, сопоставимых с платформенными, а метасоматическая гранитизация завершающей стадии развития диапира сопоставима с гранитизацией завершающей стадии развития геосинклинали.

Геохимические типы двуполевошпатовых гранитов и бла	аститов Карелии
---	-----------------

Окислы	Бариевый				Рубидиевый						
	1 (17)	2 (16)	3 (6)	4 (39)	5 (34)	6 (11)	7 (6)	8 (16)	9 (2)	10 (5)	11 (25)
SiO ₂	68,06	71,96	72,55	72,17	69,79	73,0	75,53	74,51	73,47	73,65	74,63
TiO ₂	0,39	0,19	0,26	0,26	0,40	0,22	0,11	0,11	0,02	0,03	0,17
Al_2O_3	15,91	14,92	14,36	12,67	13,93	14,40	13,25	13,49	14,97	15,64	12,42
Fe_2O_3	1,17	0,87	0,53	0,66	1,64	0,66	0,62	0,52	0,95	0,33	1,29
FeO	2,31	1,00	1,15	1,93	2,77	1,35	0,77	0,82	0,64	0,63	1,72
MnO	0,05	0,02	0,02	0,03	0,09	0,05	0,03	0,04	0,02	0,06	0,04
MgO	1,33	0,22	0,56	0,68	0,40	0,47	0,29	0,24	0,2	0,1	0,11
CaO	3,15	1,33	1,51	1,34	1,39	1,69	0,75	0,80	0,7	0,68	0,71
Na ₂ O	4,12	3,34	3,19	3,07	2,90	4,08	3,74	3,54	3,10	5,0	3,18
K_2O	2,81	5,49	4,88	4,91	5,65	3,56	4,52	5,28	4,20	2,64	5,05
P_2O_5	=	_	0,09	0,10	0,30	_		0,045	0,16	0,32	0,20
Rb	136	122	157	178	180	174	226	351	478	385	313
Li	23	9	16	16	34	31		17	107	207	67
Cs	4	3	1	3	_	6	5	5	36	31	_
Ba	1223	2297	1746	1378	2225	583	610	467	60	135	148
Sr	613	516	658	300	153	196	85	102	30	19	85
Zr	_	-	196	214	413	_	ı	44	37	51	305
Y		_	25	22	43	_	_	11	_	3	90

П р и м е ч а н и е . 1 — позднеархейские биотитовые бластиты Западной Карелии; 2 — позднеархейские субщелочные граниты Западной Карелии; 3 — позднесвекокарельские граниты о. Путсаари, ЮЗ Приладожье; 4 — дайки и пластовые тела позднесвекокарельских лейкогранитов зоны гранулитового метаморфизма ЮЗ Приладожья; 5 — граниты рапакиви (выборгит) Салминского плутона; 6 — позднеархейские биотитовые бластиты оз. Остер Центральной Карелии; 7 — позднеархейские плагиомикроклиновые граниты оз. Остер Центральной Карелии; 8 — позднесвекокарельские плагиомикроклиновые граниты Латвасюрьи (зона амфиболитовой фации метаморфизма), ЮЗ Приладожье; 9 — позднесвекокарельские мусковитовые граниты Маткасельки Северного Приладожья; 10 — альбитизированные и грейзенизированные граниты Маткасельки; 11 — равномернозернистые биотитовые граниты Салминского плутона. Окислы — мас.%, элементы — г/т, в скобках — количество анализов.

Сущность бимодальности при формировании подобного рода диапиров заключается в том, что производные образования базитовой и гранитной магмы одновозрастны, формируются в одинаковых тектонических условиях и базитовая магма является главным термальным источником для плавления коры. Бариевый и рубидиевый геохимические типы гранитов имеют свою индивидуальную металлогеническую специализацию. На площади развития гранитов рубидиевого типа (как архейского, так и раннепротерозойского возраста) известны рудопроявления молибдена, вольфрама, олова, отсутствующие на площади развития соответствующих высокобариевых пород. Головная наддиапировая зона с «сухим» флюидным режимом может быть перспективной на поиски алмазов [13].

К рифейскому этапу формирования диапира в Приладожье относится бимодальный габброанортозит — рапакиви гранитный магматизм Салминского плутона. В составе Салминского плутона роговообманково-биотитовые граниты рапакиви содержат повышенные концентрации Ва, Zr, P, а безовоидные граниты, так же как и их дифференциаты протолитионитовые редкометалльные граниты, — повышенные концентрации Rb, F, а также Y, Li, U, Ta, Th, Nb. Геохимические различия овоидных гранитов рапакиви и безовоидных

- 1. Светов А. П. Палеовулканология ятулия Центральной Карелии. Л., 1972. 118 с.
- 2. *Светов А. П.* Платформенный базальтовый вулканизм карелид Карелии. Л., 1979. 208 с.
- 3. Светов А. П., Свириденко Л. П. Стратиграфия докембрия Карелии. Сортавальская серия свекокарелид Приладожья. Петрозаводск, 1992. 151 с.

редкометалльных гранитов обусловлены, прежде всего, различием в составе флюида [14]. Граниты рапакиви характеризуются более высоким содержанием мольной доли газов группы углерода (СН₄, СО, СО₂) по сравнению с безовоидными гранитами, а последним свойственно более высокое содержание фтора. Они имеют самостоятельный источник расплавов (более глубинный у гранитов рапакиви), что согласуется с их «сухостью». Высокобариевый геохимический тип сопоставим с гранитами щелочно-гранитного типа [15], а высокорубидиевый тип - с гранитами плюмазитового типа. Рифейский бимодальный магматизм Салминского плутона носит наследованный характер, сущность которого заключается в том, что в свекокарельское время мантийный диапир обеспечил прогрев земной коры, достаточный для ее плавления в рифее под воздействием базитовой магмы.

Геодинамические обстановки проявления разновозрастного докембрийского диапиризма связаны с глыбово-волновыми колебательными движениями и геоизостатической неустойчивостью земной коры [5]. Сводовое воздымание Фенноскандинавского щита с геометрическим центром в районе Лофотенских островов обусловило формирование автоволновой системы напряженного состояния литосферы.

- 4. Светов А. П., Свириденко Л. П., Иващенко В. И. Вулкано-плутонизм свекокарелид Балтийского щита. Петрозаводск, 1990. 321 с.
- 5. Светов А. П., Свириденко Л. П. Центры эндогенной магматической активности и рудообразования Фенноскандинавского щита (Карельский регион). Петрозаводск, 2005. 357 с.

- 6. Светов А. П., Свириденко Л. П. Магматизм шовных зон Балтийского щита. Л., 1991. 199 с.
- 7. Летников Ф. А. Флюидные фации континентальной литосферы и проблемы рудообразования // Тр. семинара Отделения «Проблемы глобальной геодинамики и металлогении». Вестник ОГГГГН РАН. 1999. № 4 (10).
- 8. *Летников* Ф. А. Процессы самоорганизации при формировании магматогенных и гидротермальных рудных месторождений // Геология рудных месторождений. 1997. Т. 38, № 4. С. 307—322.
- 9. Glebovitsky V. A., Baltybayev Sh. K., Kovach V. P. et al. Tectonic evolution of the Svecofennian accretional orogen (SE Finland and north Ladoga region) // Svekalapko WS, abstracts, 1997. P. 30.
- 10. Глебовицкий В. А., Балтыбаев Ш. К., Левченков О. А. u др. Главная стадия плутоно-метаморфической активности в Приладожье: результаты определения изотопного возраста // ДАН. 2001. Т. 377, № 5. С. 667—671.
 - 11. Глебовицкий В. А., Балтыбаев Ш. К., Левченков О. А.

- u ∂p. Время, длительность и РТ-параметры полистадийного метаморфизма свекофеннид Приладожья (Балтийский щит) (по данным термобарометрии и U-Pb-геохронометрии) // ДАН. 2002. Т. 384, № 5. С. 660—664.
- 12. Свириденко Л. П., Светов А. П. Метаморфизм ареалов докембрийского активного вулкано-плутонизма Карелии // Первый Всерос. симпоз. по палеовулканологии. Петрозаводск, 2001. С. 120—122.
- 13. Светов А. П., Свириденко Л. П., Шаров Н. В. Диапиризм и проблемы алмазоносности докембрия Карелии // Материалы совещ. «Тектоника земной коры и мантии. Тектонические закономерности размещения полезных ископаемых». М., 2005. Т. П. С. 181–184.
- 14. *Sviridenko L. P.* The evolution of the fluid phase during the crystallization of granite types: Salmi pluton, Karelia, Russia // Mineralogy and Petrology. 1994. V. 50. P. 59–67.
- 15. *Таусон Л. В.* Типизация магматитов и их потенциальная рудоносность // Тез. 27-й междунар. геол. конгр. «Петрология». Т. 9. М., 1984. С. 221–229.

ТИПОВЫЕ МАГМАТИЧЕСКИЕ СЕРИИ МЕЗОАРХЕЙСКИХ СУБДУКЦИОННЫХ СИСТЕМ

С. А. Светов

Институт геологии Карельского НЦ РАН, Петрозаводск; ssvetov@krc.karelia.ru

Детальные геохимические и петрологические исследования последних лет, проводимые в пределах фанерозойских субдукционных систем, позволили выделить целый ряд специфических породных серий андезитового ряда, таких как БАДР, адакитовая, байяитовая, высоко-Nb андезибазальтов, андезитов и ряд других, которые являются не только отражением смены условий магмогенерации в субдукционных системах, но и часто свидетельствуют об их латеральной зональности.

Данные работы стали методической основой для развития детальных геохимических исследований сохранившихся фрагментов архейских конвергентных зон, реконструированных в пределах древних кратонов мира, в частности, таких, как Сьюпериор в Канаде [1–3], и многих других. Часть выделенных андезитовых серий, например адакитовая, стали своеобразными геодинамическими индикаторами субдукционных режимов.

В настоящей статье представлены последние результаты изучения мезоархейских андезитовых ассоциаций Ведлозерско-Сегозерского зеленокаменного пояса Центральной Карелии. Данный пояс представляет собой одну из наиболее древних на Фенноскандинавском щите (мезоархейскую) транзитных зон перехода протоокеан (реликты океанических ассоциаций фрагментарно сохранились в виде коматиит-толеитовой серии) — континент (Водлозерский блок) с выделяемыми эпизодами формирования в конвергентной зоне протоостроводужной системы (в интервале 3,05—

2,95 млрд лет) и более поздней вулканической ассоциации активной континентальной окраины (2,90—2,80 млрд лет). Предлагаемое исследование затрагивает породные комплексы андезитового ряда обоих временных срезов.

По сравнению с прочими архейскими образованиями Фенноскандинавского щита (Восточной Карелии, Западной Карелии и Восточной Финляндии), мантийно-коровый вулканизм Центрально-Карельского сегмента в изотопногеохимическом и петрологическом отношении изучен недостаточно (хотя именно эта территория является ключевой для понимания специфики зарождения и эволюции мезоархейского магматизма на западной конвергентной границе континентальной коры палеоархейского Водлозерского блока и мезоархейского протоокеана). В пределах данной территории в коллажированном виде сохранился достаточно полный разрез вулканогенно-осадочных комплексов, характеризующих все стадии эволюции транзитной зоны от 3,1 до 2,7 млрд лет.

Относительно низкая степень структурно-метаморфических преобразований вулканогенноосадочных последовательностей пород позволяет проводить палеовулканические реконструкции динамики литогенеза, петролого-геохимические исследования архейских породных ассоциаций различной сериальной принадлежности и контрастного геодинамического заложения. Результаты этих исследований были обобщены ранее [4],