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В статье описывается первое соревнование, посвященное морфологическому анали-
зу малоресурсных языков России, а именно: эвенкийского, карельского, селькупского и
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на морфемы, а также синтез словоформ. В статье описываются корпуса, специально
подготовленные для соревнования, а также анализируются методы, использованные
его участниками. Наилучшие результаты показали модели, основанные на нейронных
сетях.
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1 Introduction
According to the 2010 Census [1], more than 250 languages from 14 language families are
spoken in Russia. About 100 of them are minority languages. It is worth noting that
even non-minority languages, such as Yakut (Sakha), are considered vulnerable. For most
languages of Russia, apart from Russian, digital resources either do not exist or are relatively
scarce.

The shared task1 was held from January to March, 2019. The aims of the shared task
were as following:

1. to facilitate and stimulate the development of corpora and linguistic tools for minor
languages:

(a) One of the results produced by the shared task are text corpora which are uni-
formly tagged and accessible online.

(b) The participants are obliged to share the resulting systems.

2. to inspire better communication between the communities of field linguists and NLP
researchers;

3. to figure out how modern methods of morphological analysis, tagging, segmentation,
and synthesis cope with sparse training data, the lack of standard language and large
rate of dialectal varieties.

2 Related work
We present a short survey of corpora for minor languages of Russia. A detailed survey of
Russian minority language corpora and morphology tools as of 2016 can be found in [2].
However, more corpora have been developed since then. Therefore we suppose that the
topic should be revisited.

2.1 Corpora

Most corpus resources are created by language activists and are based on digitalized books
and other printed materials. Some examples are the corpora created by The Finno-Ugric
Laboratory for Support of the Electronic Representation of Regional Languages2, The digital
portal of Selkup language3 etc.

On the other hand, field data collected during linguistic expeditions is often transformed
into corpora. These corpora are usually created by universities such as the corpora published
at HSE Linghub4, VepKar5 at the Karelian Research Center, the Siberian-Lang language
data6 collected by MSU and The Institute of Linguistics (Russian Academy of Sciences) and
many other projects. Furthermore, some projects also leverage old field data, digitizing it.
For example, in INEL project7, field data for Selkup and now extinct Kamassian language
have been digitized and processed.

1https://lowresource-lang-eval.github.io/content/shared_tasks/morpho2019.html
2http://fu-lab.ru/
3http://selkup.org/
4https://linghub.ru/
5http://dictorpus.krc.karelia.ru/en
6http://siberian-lang.srcc.msu.ru/
7https://inel.corpora.uni-hamburg.de/
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Field data consists mostly of oral texts. Therefore, corpus materials often contain non-
standard varieties of a language and demonstrate remarkable dialectal and sociolinguistic
features. However, the high level of variation makes it challenging for automatic processing.

Table 1 shows the resources for the languages of Russia, which are available online as
language corpora with search facilities. We do not include published books of interlinearized
texts although they can be used as a source for future corpora.

Table 1: Morphological resources for languages of Russia

Language Tokens Parallel
languages

Markup License

Abaza8 32 796 Russian no tags NA
Avar9 2 300 000 - tags, no disambiguation NA
Adyghe10 7 760 000 Russian tags, no disambiguation NA
Archi11 58 816 - tags, not detailed NA
Bagvalal12 5 819 Russian tags with disambiguation NA
Bashkir13 20 584 199 - tags, no disambiguation NA
Beserman
Udmurt14

65 000 Russian tags with disambiguation CC BY 4.0

Buryat 15 2 200 000 - tags, no disambiguation NA
Chukchi16 6393 English,

Russian
tags with disambiguation NA

Chuvash 17 1 147 215 Russian
(partially)

no tags NA

Crimean
Tatar18

56 752 - no tags

Dargwa 19 48 957 Russian tags with disambiguation NA
Erzya 20 3 130 000 partially

(Russian)
tags, no disambiguation CC BY 4.0

Evenki 21 121 286 Russian
(partially)

tags, no disambiguation own license

Evenki 22 25 000 Russian tags with disambiguation NA
Godoberi23 872 English tags with disambiguation NA
Kalmyk24 858 235 - tags, no disambiguation NA

8https://linghub.ru/abaza_rus_corpus/search
9http://web-corpora.net/AvarCorpus/search/?interface_language=en

10http://adyghe.web-corpora.net
11http://web-corpora.net/ArchiCorpus/search/index.php?interface_language=en
12http://web-corpora.net/BagvalalCorpus/search/?interface_language=en
13http://bashcorpus.ru/bashcorpus/
14http://beserman.ru/corpus/search
15http://web-corpora.net/BuryatCorpus/search/?interface_language=en
16http://chuklang.ru/corpus
17http://corpus.chv.su
18https://korpus.sk/QIRIM
19http://web-corpora.net/SanzhiDargwaCorpus/search/?interface_language=en
20http://erzya.web-corpora.net
21http://corpora.iea.ras.ru/corpora/news.php?tag=6
22http://gisly.net/corpus
23http://web-corpora.net/GodoberiCorpus/search/?interface_language=en
24http://web-corpora.net/KalmykCorpus/search/?interface_language=en
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Karelian25 66 350 Russian tags with disambiguation (partial) CC BY 4.0
Khakas26 285 000 Russian tags, no disambiguation NA
Khanty27 161 224 Finnish,

English,
Russian

tags with disambiguation (partial) CLARIN
RES

Komi-
Zyrian28

54 076 811 - tags, no disambiguation NA

Mansi29 961 936 - tags (not detailed) NA
Nenets 30 125 421 Russian

(partially)
no tags own license

Nenets 31 148 348 Russian no tags CLARIN
RES

Ossetic 32 12 000 000 - tags, no disambiguation NA
Romani 33 720 000 - tags, no disambiguation NA
Selkup 34 18 763 English,

German,
Russian

tags with disambiguation CC BY-
NC-SA
4.0

Shor 35 262 153 Russian
(partially)

1 own license

Tatar 36 180 000 000 - tags, no disambiguation NA
Udmurt 37 7 300 000 - tags, no disambiguation NA
Veps 38 46 666 Russian tags with disambiguation (partial) CC BY 4.0
Yiddish 39 4 895 707 - tags, no disambiguation NA

2.2 Other shared tasks on low-resource evaluation

The main Shared Task concerned with morphological tagging is the well-known CoNLL
Shared Task on parsing from raw data to Universal Dependencies [12]40, [11]41. Though
the main goal of this competition is evaluation of dependency parsers, it also deals with
morphological analysis since morphological tags are used as features for further syntactic
processing. The task included 82 corpora of different size for 57 languages in its 2017 edition,
with the size of the corpora ranging from several hundred words to more than 1 mln. The
shared task organizers name 9 treebanks as small (they contain from 4K to 20K words) and
9 as low-resource. The size of low-resource treebanks is less than 1000 words. These two

25http://dictorpus.krc.karelia.ru/en
26http://khakas.altaica.ru
27https://kitwiki.csc.fi/twiki/bin/view/FinCLARIN/KielipankkiAineistotKhantyUHLCS
28http://komicorpora.ru
29http://digital-mansi.com/corpus
30http://corpora.iea.ras.ru/corpora
31http://www.ling.helsinki.fi/uhlcs/metadata/corpus-metadata/uralic-lgs/samoyedic-lgs/nenets
32http://corpus.ossetic-studies.org/search/index.php?interface_language=en
33http://web-corpora.net/RomaniCorpus/search/?interface_language=en
34https://corpora.uni-hamburg.de/hzsk/en/islandora/object/spoken-corpus%3Aselkup-0.1
35http://corpora.iea.ras.ru/corpora/news.php?tag=3&amp;period=
36http://tugantel.tatar
37http://web-corpora.net/UdmurtCorpus/search/?interface_language=en
38http://dictorpus.krc.karelia.ru/en
39http://web-corpora.net/YNC/search
40http://universaldependencies.org/conll17/
41http://universaldependencies.org/conll18/
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categories of treebanks differ dramatically in terms of tagger performance: while the average
accuracy of morphological tagging was 82% for small treebanks, the quality for low-resource
language was only 25%. Therefore, the datasets used in our Shared Task better fit to “small”
category than to the low-resource one. However, for most small treebanks in UD one can
also learn from data either for a closely related language, for example, Finnish for North
Sámi (sme_giella), or even a different corpus for the same language (Latin la_proiel corpus
with 272K words for la_perseus corpus with 18K words). That is not the case for two main
languages of our Shared Task, Evenki and Selkup, while for Veps and Karelian one can use
Finnish or Estonian as an additional source.

The only known competition on morpheme segmentation was MorphoChallenge Shared
Task 42 held from 2005 to 2010. The amount of labeled training data in its edition was
rather small (about 1700 word types), however, the organizers provided an additional word
list, which included several hundred thousands of unsegmented words since morpheme seg-
mentation was usually treated as minimally supervised or semi-supervised problem. In recent
studies on supervised morpheme segmentation, such as [6], the training dataset usually did
not exceed 2000 words, though the amount of segmented data in our competition was even
greater than in analogous studies.

The main Shared Task on morphological inflection, the Sigmorphon Shared Task [4]
specially provided three types of training datasets: low-resource (100 words), middle (1000
words) and large (up to 10000 words).

3 Shared task description
The task consists of three tracks which are described below. Evaluation scripts can be found
in our Github repository43. The participants were allowed to use any external dataset.
However, they were required to publish their solutions into open-source. It was done to
accelerate NLP tool development for minor languages. The participants could provide several
solutions.

3.1 Morphological analysis

The morphological analysis task was to to produce lemmata, part-of-speech tags and mor-
phological features for tokenized sentences. Training data was annotated using CONLL-U
format44 also used in Universal Dependencies project. We extended the annotation for the
corpora without morphological disambiguation: in case a word had several analyses in corpus,
we listed them all on consecutive lines. Words lacking morphological analysis in the corpora
were annotated with distinguished unkn tag. An example of the markup for Karelian can
be found below:

13 julkaistuja UNKN _ _ _ _ _ _ _
14 kirjoja kirja NOUN _ Number=Plur|Case=Par _ _ _ _

The following metrics were evaluated:

1. the fraction of word forms with correct lemmata;

2. the fraction of sentences where all word forms have correct lemmata;

3. the fraction of word forms with correct part-of-speech tags;
42http://morpho.aalto.fi/events/morphochallenge/
43https://github.com/lowresource-lang-eval/morphology_scripts/tree/master/evaluation
44https://universaldependencies.org/format.html
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4. the fraction of sentences where all word forms have correct part-of-speech tags;

5. precision, recall, and F1 score of predicted morphological features calculated according
to:

P =
TP

TP + FP
,

R =
TP

TP + FN
,

F1 =
2PR

P +R
=

TP

TP + 0.5(FP + FN)
,

where TP is the number of true positives (correct morphological features), FP is the
number of false positives (incorrectly assigned morphological features) and FN is the
number of false negatives (missed morphological features).

3.2 Morpheme segmentation

The training data consisted of tokenized sentences with each word split into morphemes.
The task was to train a model which could produce morpheme segmentation for unknown
words, too. Model quality was evaluated similarly to MorphoChallenge45, i. e. we calculated
boundary precision (P), recall(R), and F1 score using traditional formulas, where true pos-
itives are correct boundaries, false positives are incorrectly predicted boundaries and false
negatives are missed boundaries.

3.3 Morpheme synthesis

The training data was the same as in the morphological analysis task. The participants were
to generate word forms, given lemmata, part-of-speech tags, and other morphological tags.
The following measures were calculated:

1. the fraction of word forms which were absolutely correct;

2. average Levenshtein distance between the word forms generated by the participant and
the correct word forms. If several are possible, the closest one is used.

4 Evaluation datasets
The following datasets were kindly provided by their creators:

1. Evenki: mainly oral texts recorded in 1998—2016 during fieldwork trips by Olga Kaza-
kevich et al. Has morphological information as well as morpheme segmentation [14];

2. Selkup: oral texts recorded by A. I. Kuzmina in 1962—1977, processed and anno-
tated within the INEL project. Has morphological information as well as morpheme
segmentation [3];

3. Veps and Karelian corpus developed within the VepKar project (described in more
detail below).

45http://morpho.aalto.fi/events/morphochallenge2005/evaluation.shtml
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It is worth noting that the corpora have been created by linguists and are based on fieldwork
data with detailed manual markup. This is unusual for ordinary computational linguistics
corpora for major languages, which are usually based on written sources and are therefore
more standardized and balanced.

All the corpora had different formats and incompatible markup standards. This would
make it hard for the participants to use them. Furthermore, our aim was to allow the
participants to combine data from different corpora, using transfer learning or other methods.
Therefore, the corpora were converted into the morphological CONLL-U format, used in the
Universal Dependencies (UD) treebanks 46. Moreover, using the standard format makes the
resources of the languages in question accessible to researchers all over the world. It makes
it possible to include them into the community of "living" and "major" languages (such as
Russian and English), which are available to researchers all over the world for processing
and building computational models.

On the one hand, the morphological annotation of UD is quite scarce due to the principles
of its construction (new tags are only added after the treebanks are added to the project). As
a result, we had to exclude many morphological tags. In some linguists’ opinion, the resulting
narrowed format deprived the language data of essential linguistic information. However, we
regarded the narrowing as a necessary trade-off. In addition, the necessity to reformat the
corpora made us reanalyze some complex cases and find mistakes in the analysis.

The complex export process is described below in greater detail.

4.1 Export of the Evenki corpus to CONLL format

The Evenki corpus data consisted of EAF47 format files. Some texts used in the corpora were
originally manually annotated interlinearized texts, lacking lemmata and POS tags. Deter-
mining those was the most difficult part of the corpus transformation process, and involved
manual work. For instance, the Evenki corpus contained word forms like oldomotto:wer (‘in
order to catch fish‘), with the derivative suffix -mo(‘hunt‘) attached to the nominal oldo
(‘fish‘) stem. When preparing the data, we turned this combination of morphemes into a
single lemma, namely oldomo.

4.2 Export of the Selkup corpus to CONLL format

In contrast with the Evenki corpus, the INEL Selkup corpus contained the necessary data.
The difficulty of the transformation process consisted in the mapping between the rich and
detailed corpus markup and the CONLL format. It was also troublesome to determine the
lemma. Our criterion for lemma determination was to combine the stem and the derivative
affixes but not the inflectional ones. Thanks to the help of experts, we could distinguish
between the two sets of affixes. For example, we considered some aspectual affixes to be
inflectional for Evenki, according to the grammars. In contrast with it, Selkup aspectual
morphemes were considered to be derivative. For example, kurol‘na was segmented as kur-
ol‘(INCH)-na(CO.3SG.S). Therefore, the first two morphemes were considered to constitute
the lemma kurol‘.

46https://universaldependencies.org/
47https://tla.mpi.nl/tla-news/documentation-of-eaf-elan-annotation-format/
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4.3 Export of the VepKar corpus to CONLL format

4.3.1 Languages and dialects of the VepKar corpus

For the shared task, the VepKar developers have presented texts in Veps language and in
three main supradialects of Karelian language.

VepKar contains a variety of dialects and subdialects of the Karelian language (see fig.
1). The scheme is based on [13], [7].

Figure 1: Scheme of dialects of the Karelian language, the number of wordforms (left) and
the number of texts (right) in these dialects in the VepKar corpus

There are three written Karelian standard languages. This is due to several reasons.
Native Karelian speakers live on a rather vast territory. For several centuries, the language
has been influenced by the neighboring Veps, Finnish, and, of course, Russian. The lexical
and phonetic systems were the ones most influenced from the outside. This influence gave
rise to the three supradialects. Therefore, the corpus uses a separate Karelian dictionary for
each supradialect. As of February, 2019 the statistics for the corpus were as following:

1. Olonets Karelian or Livvi (17 thousand lemmata);

2. Ludic Karelian (500 lemmata);

3. Karelian Proper (100 lemmata).

Therefore, three export data sets in CONLL format have been generated, one for each
dialect.
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4.3.2 The most frequent tokens list

To assist lexicographers in their manual markup process, a generator of the most frequent
tokens list (words from the corpus texts) was developed. It is available at the VepKar
website48. Using the radio button “does this word exist in the dictionary?”, one can get a
list of the most frequent tokens that do not have dictionary entries in the VepKar dictionary
(see fig. 2).

This list allows the corpus editors to add the most frequent word forms to the corpus
dictionary first. Processing primarily the most frequent word forms accelerates the morpho-
logical markup of most corpus texts. In the dictionary, two options are possible:

• There is a lemma and there is no word form.

• There is neither word form nor lemma.

Figure 2: The first most frequent tokens of Veps texts in the VepKar corpus which are absent
in the VepKar dictionary, with links to usage examples and frequencies in the corpus

In the second case, while creating the lemma, the editor can also add the other word
forms. This makes text markup possible if the lemma is found in texts in other grammatical
forms.

4.3.3 VepKar development

Participation in this competition was the driving force for the development of the VepKar
corpus. To export the data from the VepKar corpus to CONLL, the corpus structure had to
be refined significantly. The following features were added to the morphological properties
of a lemma:

• for nouns: animacy (“Animacy” in Universal features);

• pluralia tantum (Number=Plur);

• for verbs: transitivity (Subcat);
48http://dictorpus.krc.karelia.ru/ru/corpus/word/freq_dict

9



• for numerals: type of numeral (NumType: quantitative, collective, ordinal, fractional);

• for pronouns: type of pronoun (PronType);

• for adjectives and adverbs: degree of comparison (Degree);

• for adverbs: type of adverb (AdvType).

Initially, VepKar had one part of speech to designate conjunctions. According to the Univer-
sal POS tags, the VepKar conjunctions were divided into subordinating and coordinating.

4.3.4 The exporting process

While exporting VepKar data to CONLL format, the following conventions were accepted:

1. For an unknown lemma, write UNKN to the LEMMA column and an underscore to
the remaining columns.

2. Write each pair of LEMMA + UPOS on separate lines.

3. Export prepositions (PREP) and postpositions (POSTP) from VepKar corpus to ADP
in CONLL. Features PREP or POSTP are indicated in the XPOS field.

4. In a multilingual corpus one file is generated for one language.

5. CONLL-style comments are used for adding sentence identifiers.

4.3.5 Corpus data not included in the CONLL export

In the VepKar corpus there are data that were not exported to CONLL: predicatives (23
lemmas in Olonets Karelian) and phraseological units.

4.4 Dataset statistics

Table 2 summarizes some statistical features of the datasets:

Table 2: Dataset statistics

Part Language Sentences Words POSes Tags49 Rare(3)
tags50

Rare(10)
tags51

Full
tags52

Rare53

full
tags
%

Train Evenki 5 527 26 926 12 55 0 2 714 100
Test Evenki 548 2 819 12 53 0 1 270 98
Train Selkup 2 394 13 436 12 34 2 3 218 98
Test Selkup 425 2 426 12 30 1 1 109 95
Train Veps 38 793 357 811 13 47 0 4 147 99
Test Veps 2 163 19 376 13 42 0 1 86 100
Train Karelian

(proper)
7 048 68 296 11 34 4 6 66 100

49Pairs of feature=value
50occurring less than 3 times in the train set
51occurring less than 10 times in the train set
52combinations of tags
53less than 10% of all words
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Test Karelian
(proper)

919 8 640 9 30 1 3 44 100

Train Karelian
(Ludic)

1 711 15 805 12 27 5 5 29 97

Test Karelian
(Ludic)

204 1 968 11 22 0 0 19 95

Train Karelian
(Livvi)

6 213 57 093 13 23 4 6 26 88

Test Karelian
(Livvi)

745 7 206 13 17 0 1 19 84

91.2 One can see from this table that the concept of "full tags", i.e. sets of morphological
features, does not seem to work well for agglutinating languages due to the huge number of
combinations.

5 Participants and results

5.1 System description.

In the morphological analysis track, three teams took part. The morpheme segmentation
and word form generation tasks were less popular with only one team participating in each
of them.

MSU-DeepPavlov team [9] utilized recurrent neural networks on word level. The
embeddings of words were obtained using convolutional networks with highway layer on the
top, closely following [5] and [8]. This team demonstrated the highest scores on Evenki and
Selkup datasets on all metrics and on Veps dataset on part-of-speech prediction54.

The second team, drovoseq used BertBiLSTMAttnNMT encoder-decoder architecture
to decode the optimal sequence of morphological tags. The third one, SPBUMorph used
a variant of Markov models to evaluate the probability of a tag given the word.

For lemmatization, the winning MSU-DeepPavlov team used a neural network to
predict the pattern of the transformation between the surface word and its initial form,
while drovoseq used encoder-decoder architecture.

The only submitted morpheme segmentor used the model similar to [10], which reduced
the task of morpheme segmentation to sequence labeling.

5.2 Results

The results are shown in Tables 3, 4 and 5:

Table 3: Morphological analysis: results

Team # Language % of
cor-
rect
lem-
mata
for
wf

% of
cor-
rect
lem-
mata
for
sen-
tences

% of
cor-
rect
POS’es
for
wf

% of
cor-
rect
POS’es
for
sen-
tences

feature
pre-
ci-
sion

feature
recall

feature
F2

54It did not participate on other subtasks.

11



drovoseq 1 Evenki 0,8617 0,7550 0,8811 0,8086 0,8112 0,7993 0,8052
drovoseq 1 Karelian

(proper)
0,9971 0,9869 0,9909 0,9603 0,9539 0,9373 0,9455

drovoseq 1 Karelian
(Ludic)

0,9959 0,9828 0,9726 0,8897 0,9356 0,8769 0,9053

drovoseq 1 Karelian
(Livvi)

0,9629 0,8631 0,8969 0,7168 0,8471 0,7985 0,8221

drovoseq 1 Selkup 0,8780 0,7647 0,8343 0,7529 0,8014 0,7713 0,7861
drovoseq 1 Veps 0,9761 0,9087 0,9572 0,8534 0,6691 0,4666 0,5498
drovoseq 2 Evenki 0,8710 0,7620 0,9075 0,8201 0,8156 0,8217 0,8187
drovoseq 2 Karelian

(proper)
0,9977 0,9889 0,9992 0,9956 0,4045 0,1776 0,2468

drovoseq 2 Karelian
(Ludic)

0,9970 0,9851 0,9959 0,9777 0,5962 0,3570 0,4466

drovoseq 2 Karelian
(Livvi)

0,9797 0,9108 0,9781 0,9074 0,6751 0,4489 0,5392

drovoseq 2 Selkup 0,8941 0,7759 0,8586 0,7354 0,8029 0,8026 0,8028
drovoseq 2 Veps 0,9875 0,9480 0,9938 0,9753 0,4873 0,2678 0,3457
MSU-
DeepPavlov

1 Evenki 0,8838 0,7914 0,9122 0,8421 0,8805 0,8809 0,8807

MSU-
DeepPavlov

1 Selkup 0,9031 0,8035 0,8957 0,7965 0,9095 0,9082 0,9089

MSU-
DeepPavlov

1 Veps 0,3003 0,5146 0,9943 0,9769 0,5471 0,8073 0,6522

SPBUMorph 1 Evenki 0,7125 0,2857 0,7222 0,3099 0,1503 0,3692 0,2137
SPBUMorph 1 Karelian

(proper)
0,9992 0,9913 0,9994 0,9935 0,7028 0,9172 0,7958

SPBUMorph 1 Karelian
(Ludic)

0,9975 0,9706 0,9959 0,9608 0,5692 0,8674 0,6873

SPBUMorph 1 Karelian
(Livvi)

0,9653 0,7369 0,9460 0,6148 0,4742 0,7064 0,5674

SPBUMorph 1 Selkup 0,6834 0,2000 0,6818 0,2447 0,1400 0,3147 0,1938
SPBUMorph 1 Veps 0,9839 0,8798 0,9899 0,9177 0,5471 0,8073 0,6522

Table 4: Morpheme segmentation: results

Team # Language Precision Recall F1 % of totally correct wordforms
deeppavlov 1 Evenki 0,9774 0,9783 0,9779 0,9317
deeppavlov 1 Selkup 0,9538 0,9551 0,9544 0,8640

Table 5: Word form generation: results

Team # Language Totally correct Averaged Levenshtein distance
SAG_TEAM 1 Evenki 0,5325 1,2585
SAG_TEAM 1 Selkup 0,5076 1,1621
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6 Discussion
For the time being, the languages under consideration do not have robust rule-based parsers,
therefore the only source of comparison is the annotation of the test set. We also notice
that participants reported errors and discrepancies in the annotation during training phase.
Although we fixed most of them after the discussion, this could potentially influence the
systems’ efficiency.

First, we would like to note that the topmost system achieved significantly high scores
on tasks of morphological analysis, lemmatization and morpheme segmentation, which is
comparable to scores of state-of-the-art systems on other datasets of similar size.

6.1 Morphological analysis results

It is interesting that the systems made similar mistakes. It certainly has to do with the
limitations of the data itself, its relatively low amount and scarcity. However, the percentage
of errors differs significantly between the systems, which implies that different models require
different amounts of labeled data to be trained on.

6.1.1 Lemmatization

Lemmatization errors can be grouped as following:

1. Rare lemmata: e. g., the Evenki jaja ‘to chant shamanic songs‘ can only be found in
few texts.

2. "Non-standard" lemmata: the oral texts in a minor language naturally contain a lot
of loanwords. These loanwords, especially recent ones, are often different phonetically
from the basic words. They seem to present troubles for all systems. E. g., the Evenki
kirest ‘cross‘ < Russian krest has st consonant cluster, which is not typical for an Evenki
word. Another example is penśianerka ’pensionnaire (woman)’ < Russian penśianerka.
This word with its inital "p" sound is not typical for the language. Furthermore, its
ending corresponds with the -rkV suffix. Not surprisingly, most systems judged -rka
to be a suffix in this word. Similarly, the systems split the Selkup word poshalusta
’please’ < Russian pozhalusta, separating the ending sta. It would be interesting to
check if the results could improve if the systems accounted for Russian loanwords.

3. Short lemmata. The systems seemed to prefer long roots over short ones. As a result,
word forms with one-letter roots are processed incorrectly. For example, e ’negative
verb’ or i: ’enter’ presented a trouble for the systems. On the other hand, in some
cases, the lemmata were standard and quite wide-spread. However, their ending in a
letter which itself constituted a wide-spread suffix caused the systems to incorrectly
split the lemma. In the Evenki data, this is true for l, n or t.

4. Morphophonological phenomena were difficult to follow for the systems. E. g., in
uguchak-ker ’reindeer-RFL.PL’ the -ker part is a surface realization of the -wer mor-
pheme after k. Similar kw -> kk alternations can be found in the training data.
However, the systems could not grasp this alternation.

6.1.2 Determining POS

As regards the POS determination, the errors show that the systems could not reliably
distinguish between nominal and verbal categories. One could expect the systems to confuse
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nouns and adjectives but not nouns and verbs. However, it is the VERB category which was
most often confused with the NOUN category. This behavior contradicts the naive linguistic
assumptions. However, it can be justified by the fact that in agglutinating languages, verbs
and nouns often have similar sets of affixes (e. g., possessive suffixes of nouns versus verbal
personal suffixes).

Interestingly, both on the Evenki and Selkup dataset the quality of POS detection was
comparable or even lower than the quality of morphological features detection. It contrasts
the traditional ratio between the quality of recovery for POS tagging and morphological fea-
tures: usually it is much easier to recover correct parts of speech than to restore all features.
For example, during CoNLL2018 evaluation campaign [11], best average POS accuracy was
90.9%, while the accuracy of features was only 87.59%. Naturally, for Russian it is much
easier to detect whether a word is a noun or a verb than to discriminate between, for exam-
ple, accusative and nominative cases. Probably, this unusual performance can be explained
by the abundancy of informal speech in the dataset, which is relatively “unconnected” in
comparison to more formal sources of most UD treebanks. This implies that basic contex-
tual clues (such as word order) prove too weak to predict part-of-speech labels. The corpora
contain phrases with slips, repetitions, discourse markers, e. g.: Wot amakalwi Ekondaduk
bal= ekun kergentin, kergentin Ekondaduk (So my grandfathers from Ekonda SLIP well,
their family, their family from Ekonda)

6.2 Morpheme segmentation

The primary causes of the morpheme segmentation errors were the following:

1. Non-standard and borrowed lemmata: as with the morphological analysis task, loan-
words cause problems, with the systems splitting them incorrectly. On the other hand,
loanwords with native suffixes such as telogrejka-t ’coat(<Russian)-INSTR’

2. Suffix combinations versus complex suffixes: interestingly, the MSU-DeepPavlov
system sometimes splits a complex suffix into parts, e. g. d’eli versus d’e-li. Actually,
the etymology of the suffix supports the claim that historically it could have been made
of these basic parts. However, in the synchronous view, we cannot split the suffix.

6.3 Word form generation

In the word form generation task, most errors were due to the vowel harmony and consonant
alternation phenomena. Vowel harmony means that there are different forms of the same
affix depending on the vowels in the stem. E. g., d’aja- requires a in some affixes. However,
the system suggests e, which is not correct. It is worth noting that these phenomena are
hard to grasp even in detailed grammatical descriptions. There is much variation in dialectal
data. Sometimes the training data and gold standard data contradict the "normal" rules,
so the results are not surprising.

However, some errors cannot be justified by the data complexity as the resulting letter
clusters are highly improbable and cannot be found in the training data.

7 Conclusion
In this paper, we present the results of the First Shared Task on morphology for low-resource
languages. As a result of the shared task, several datasets in the CONLL format were
prepared, for the first time for the languages in question. The participating teams created
new morphological analysis tools for the languages which lack modern NLP technology tools.
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The comparison of results showed the vitality of modern neural approach when applied to
low-resource datasets collected by field linguists. We also explored the limitations of the
systems, which can help improve them.
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sion 0.1. In Beáta Wagner-Nagy, Alexandre Arkhipov, Anne Ferger, Daniel Jettka,
and Timm Lehmberg, editors, The INEL corpora of indigenous Northern Eurasian lan-
guages, volume 1. HZSK Hamburg, 2018.

[4] Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekaterina Vy-
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