
Using Fingerprints in n-Gram Indices

© Stefan Selbach

Lehrstuhl für Informatik II, Universität Würzburg
selbach@informatik.uni-wuerzburg.de

Abstract

The major advantage of the n-gram inverted
index is the possibility to locate any given
substring in a document collection.
Nevertheless, the n-gram inverted index also
has drawbacks: If the collections are getting
bigger, this index tends to be very large and the
performance drops significantly. We propose a
novel technique of enhancing the performance
of an n-gram inverted index with the use of
additional fingerprints for each n-gram. A
fingerprint contains information about the
positions of an n-gram. When combining two
or more n-grams, these fingerprints also
provide information about the positions of the
combination. This can be used to reduce the
complexity of merging the n-gram postings
lists for a given search and improves the
performance of the n-gram inverted index.
Furthermore it is possible to freely scale the
size of the fingerprints in order to adjust the
performance of the index. The size of a
fingerprint is neither dependent of the size of
the document collection nor the number of n-
grams.

1 Introduction
Text searching is regarded as one of the core subjects in
Information Retrieval [1]. Many search engines (e.g.
Lucene [2]) are building word based inverted indices
for document retrieval. Thus the users of these search
engines can only search for words. If only a substring of
a term matches the given query, no results are being
returned for this hit. Many word based search engines
try to solve these problems by adding fuzziness to the
index and to the query. While parsing documents every
word is reduced to its radical. This is done by using
stemmers [3,4] and by limiting the set of allowed
characters. This procedure is also being applied to every
query. This improves the recall, however it tends to
reduce the precision of the search because words with
different meaning can accidentally be mapped to the

same radical. Even though this technique may perform
well with documents containing conventional natural
language it is not suited for terminologies. For example,
if you think of the chemical substance “1,3-
Cyclooctadiene” it should also be possible to find this
occurrence using the query “Cyclooctadiene”, because
the usage of this specific isomer “1,3-Cyclooctadiene”
is not common. So this word would be reduced to its
radical “Cyclooctadiene“. The prefix “1,3-“ will be
ignored. But since some users might however search for
this specific isomer, this information has to be included
in the index. That is where the inverted n-gram index
[5,6,7] comes into play. It enables us to perform exact
string matching, so that both queries mentioned above
return the appropriate documents. An n-gram index
divides the text of the document into overlapping
substrings of the size 1 to n. For each n-gram the
positions of all occurrences are stored in the index. The
given query is divided into n-grams as well and the
position lists of the affected n-grams are intersected to
retrieve the positions of the query. Since the number of
positions for an n-gram is always increasing while the
document collection gets bigger, the performance of
this index gets worse, because longer position lists have
to be intersected (cp. [8]). First we tried to apply
fingerprints to the n-grams, so that without storing any
positions of the n-grams in the index decision could be
made, whether the query does not hit a certain
document, or might hit a document. In the second case
verifications had to be made, if these documents match
the query. Since this verification can worsen the
performance, especially when many documents are
being affected, we added additional information of the
positions of the n-grams to the index, so that no
verification was needed. With this technique we
reduced the costs for intersecting the position lists of the
n-grams. Another advantage is that we can adjust the
performance of the index by changing the size of the
fingerprints. This gives us the potential to scale the
index according to the size of the document collection.

2 Related Work
A term based inverted index [9] consists of two major
components: terms and posting lists (see Figure 1).
Each term is linked to one posting list. A posting
contains a document-identifier (fileID) and a position
inside the document (offset). Besides, to get a fast
access to the terms, an index such as a binary tree is

Proceedings of the 11th All-Russian Research Conference
«Digital Libraries: Advanced Methods and Technologies,
Digital Collections» - RCDL’2009, Petrozavodsk, Russia,
2009.

 94

mailto:Email@small.medium.large

created over the terms [10,11]. A query is processed by
the binary tree and then the posting list is being
returned. This setup can only be used, if a query
contains terms. But if the query contains substrings of
terms, an n-gram index should be used.

posting lists of terms

posting

Binary Tree
over the
terms

fileID, (offset_1, ..., offset_n)

Figure 1: inverted index.

An n-gram index (see Figure 2) does not use terms for
indexing. The documents are divided into overlapping
substrings of the size 1 to n. For each of these n-grams a
posting list containing the positions of all occurrences is
stored in the index. In order to get a fast access to the n-
grams, a trie or hashmap is used [12].

posting lists of n-grams n-grams

a
b

ab
ba

posting fileID, (offset_1, ..., offset_n)

Figure 2: n-gram index.

Since all documents are covered by only including the
uno-grams to the index, not all of the n-grams (n>=2)
have to be included to the index. Adding more n-grams
to the index increases the performance but also
increases the index size.
The query is splitted in n-grams in a manner that the
combination of these n-grams overlaps the query. After
that the posting lists of these n-grams are being
intersected. For example the positions for
the substring w1w2 can be calculated with the positions
of the 1-grams w1 and w2:

))(()()(2121 wposdecwposwwpos ∩=

}1{)(PxxPdec ∈+=

If the document collection gets bigger, the posting

lists get bigger as well. This significantly reduces the
performance. An n-gram index grows multiple times
faster compared to a word based inverted index. While
in a word based index every additional term occurrence
creates one new posting, in a n-gram index multiple
postings have to be added because all posting lists of
affected n-grams have to be updated. Kim et Al. [13]
introduced a technique of adding a second m-gram layer
to the index. The documents were at first splittet into m-
grams and these m-grams were indexed using n-grams.

Choueka et Al. [14] presented a search index that
uses bitmaps which act as an “occurrence” map. To
each word a bitvector has been assigned. This vector
has the same length as the number of documents and
each bit identifies an occurrence of a term in a specific
document. With this technique the offsets of the terms
within the documents are discarded. Furthermore the
size of this index increases rapidly for large document
collections since the number of terms and the size of the
bitvectors are getting bigger. Choueka et Al. [14] as
well as Faloutsos [15] also introduced a hybrid index
organization so that infrequent terms were treated
differently to reduce the size of the index.

Signature files [1][9] are using a similar approach
but the size of the bitvector is independent from the
number of documents. Signature files are also word-
oriented and are based on hashing. A hash function
maps a word to a bit mask. The collection is split into
blocks and to each block a bit mask is assigned by
ORing the signatures of all the words in the text block.
A search is carried out by comparing the signature of
the query to the bitmasks of all blocks.

In this paper we want to propose a technique using
fingerprints to increase the performance of an n-gram
index. The size of these fingerprints can be freely
selected like in signature files and each bit in the
fingerprint gives information about the position of an n-
gram like in the bitmap index. Furthermore these
fingerprints can by combined with the approach that
uses only posting lists in order to achieve a better
performance.

3 n-Gram Fingerprints
Since the sizes of posting lists of n-grams are

enormous when indexing large document collections we
introduced a so called fingerprint for each n-gram that
contains information about the positions of the n-gram
and that can easily be compared to other fingerprints in
order to give information about the positions of the
combination of these n-grams. A fingerprint for an n-
gram w is a two-dimensional bit-matrix Bw of the size
f Ч o. A bit bi,j is set to 1 if there is an occurrence p ∈
pos(w) where fileID(p) mod f = i and offset(p) mod o =
j.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

−−

−

1,10,

1,00,0

off

o

w

bb

bb
B

L

MOM

L

() ()

()
⎪⎩

⎪
⎨
⎧

=
∧=∈∃

=
 o:0

mod
mod::1

,

therwise
jopoffset
ifpfileidwposp

b ji

Each bit-position is representing a collection of

positions that match the above criteria (see Figure 3).
Given two 1-grams w1 and w2 and their respective

pos)(nw Σ∈

 95

fingerprints Bw1 and Bw2 we can approximate the
fingerprint Bw1w2:

212121 '' wwwwww BBBB ∧=≈

B’w2 is constructed by cyclic shifting each column

of Bw2 by one position to the left. This is done in order
to compensate the offset of the second 1-gram in
relation to the first n-gram. The matrices Bw1 and B’w2
are combined bitwise with AND (∧) to get B’w1w2. We
can guarantee that every bit that is set in Bw1w2 is also
set in B’w1w2. However B’w1w2 may contain bits that are
set in B’w1w2 but not in Bw1w2.

fileid mod 4 = 0

fileid mod 4 = 1

fileid mod 4 = 2

fileid mod 4 = 3

off
se

t m
od

 8
=

0

off
se

t m
od

 8
=

1

off
se

t m
od

 8
=

2

off
se

t m
od

 8
=

7

fingerprint documents

Figure 3: n-gram fingerprint.

To perform a search we have to split the query into

n-grams. To get the best results we use as many n-
grams as possible. But we can skip n-grams that are
included by another n-gram because the bits set in their
fingerprints are only supersets of the bits set in the
superior n-gram. If we would index for example all 3-
grams of a given document collection we would split
the query in the same manner, so a query of length n,
would be split in n-2 3-grams. This technique is
different to the standard n-gram search where a query is
splitted into as few n-grams as possible. After that, the
fingerprints of these n-grams are being loaded from the
index and the columns of these fingerprints are cyclic-
shifted to the left by the relative position of the
respective n-gram to the first n-gram of the query.
These fingerprints are combined with AND. The
resulting fingerprint represents a collection of positions
where the query might occur. To verify the results,
these positions have to be checked against the query.
This is done by opening the involved documents and
comparing the local context of the positions to the
query. We tested this setup on the “Online
Encyclopaedia of Dermatology from P. Altmeyer”. This
collection contains over 7500 documents. Furthermore
we had the access to the querylog and could test the
performance of our new setup with real user data. We
created an index with f = 1024 and o = 128. Table 1
shows some of the resulting search speeds. The time for
the combination of the bit-matrixes is only dependent of
the length of the query. But the time for the verification
of the positions depends on the number of bits set in the
fingerprint of the search result. This can be problematic
if a user is searching for a substring, which occurs

multiple times in every document. The resulting bit-
matrix of this query is very dense and thus many
positions have to be verified, which leads to a poor
performance.

Table 1: Search speed.

Query Bit-
matrix

Time for
verification

Hits

rhinolo 219 ms 94 ms 18
sanfilipo 290 ms 0 ms 0
itracon 266 ms 336 ms 64
oxyuria 197 ms 48 ms 6

Since the size of the fingerprints can be adjusted by

changing the parameters o or f and the number of n-
grams can be limited (see section 2) the size of this
index is independent from the number of documents in
the collection. However it is recommend to increase the
size of the fingerprints when indexing large collections.
Large collections are leading to dense fingerprints
which result in a low filtration ability.

4 n-Gram Fingerprints in Combination
with Posting Lists
Analyses of user queries (see Figure 4) showed that
most users do not search for very frequent terms. 10%
of the queries hit 400 different terms with frequencies
between 150 and 2000. The remaining 90% of the
queries were almost equally distributed over the
remaining 170.000 terms. However the most of the time
of a search was needed for the verifications of hits.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 500 1000 1500 2000
 0

 0.0005

 0.001

 0.0015

 0.002

Terms in documents and queries

Query probability (averaged over 100 values)

Te
rm

 fr
eq

ue
nc

y

Q
ue

ry
 p

ro
ba

bi
lit

y

Frequency in documents

 Term-id

Figure 4: Term frequency in documents and queries.

In the next step we combined the standard n-gram

search with our fingerprinting technique. When creating
a fingerprint for an n-gram we assign a bit to every
posting of an occurrence of the n-gram. Thus we also
partitioned the postings into smaller subsets. If we do
not discard these lists, we can use them for the
verification process. For each n-gram the partitioned
posting lists were added to the index (see Figure 5).

 96

0
n-gram

fingerprint
posting lists

fileID

fileID

offset mod o

fileID mod f

f = o = 4

000010 10

000010 11

000110 10 010100 01

offset

offset

0

1

1

1

1

2

2

3

3

000110 01

000001 10

pos2,1

pos3,2

Figure 5: Combination of fingerprints and posting lists.

If f and o are multiples of 2 we do not have to

include the last log2(f) bits of the fileID and the last
log2(o) bits of the offset to the posting, because this
information is already included by the residue class (see
Figure 5).

The bitwise AND combination of the fingerprints of
the affected n-grams for a query shows which subsets of
posting lists have to be intersected. On the one hand we
reduce the cost for the intersection of the postings since
only a few of the smaller subsets have to be intersected
instead of a complete posting list for an n-gram. On the
other hand we have to deal with much more lists. Our
test corpus has been indexed with 1024 residue classes
for the fileID and 128 for the offset. As a result we get
131.072 subsets of posting lists for each n-gram. We
included 14.000 different (1-3)-grams in our index,
which made 18.350.080.000 different lists in total. Most
of these lists are empty or have only a few entries. In
order to reduce the overhead, which is necessary for
handling this large number of posting lists, we used a
file based hash table (see Figure 6). The hash value for
a given list was computed as a function of the residue
classes of fileID and offset:

() oijposh ji ⋅+=,

This way the posting lists of n-grams occuring

nearby are also stored close to each other in the index.
In this case i (the residue class for the fileID) is constant
and j (the residue class for the offset) only differs by the
distance (mod o) of the n-grams. Thus the hash value
differs also only by the distance.

hash value

index

n-gram ‘a’

n-gram ‘b’

n-gram ‘b’

n-gram ‘b’

n-gram ‘c’

n-gram ‘c’

posting lis t

posting lis t

posting lis t posting lis t

posting lis t posting lis t

0
1
2
.
.
.

()-1f o.

Figure 6: Managing the n-gram posting lists.

The main disadvantage of this technique is that the
set of possible hash values in the hash table is rather
small and the hashing function produces many
collisions. In our index for the “Online Encyclopaedia
of Dermatology from P. Altmeyer” we had 25 collisions
in average. That means in average 12.5 lists had to be
processed until the desired list was found.

If we take a look at the frequency of n-grams in the
documents and in the queries of our collection we see,
that many n-grams are rarely used in the queries (see
Figure 7). We can use this information to define a
ranking by which the posting lists sharing the same
hash value can be sorted. This way we should get a
faster access to the hash table for ordinary queries. In
order to measure the performance of this methodology
we used 5000 user queries to define the ranking of the
n-grams. We then used 5000 different user queries to
test the performance of the hash. We came to the result
that in average only 5 lists had to be processed

 100000

 0

 20000

 40000

 60000

 80000

 0 2000 4000 6000 8000

fr
eq

ue
nc

y

n-gram id

n-gram frequency in in documents and queries

n-gram frequency in queries
n-gram frequency in documents

10000

Figure 7: n-gram frequency in documents and queries.

 40000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100 120 140

fr
eq

ue
nc

y

number of ...

hash collisions and collision resolving

... collisions
... comparisons

... comparisons after sorting

Figure 8: Hash collisions and collision resolution.

in order to retrieve the desired list (see Figure 8). This
improved the performance of the hash by a factor of
2.5. This is a great result since we would need 4.6
comparisons in average to retrieve the requested list, if
we would have random access to the different lists in

 97

one hash entry (which requires more space for the
index) and could perform a binary search. This is very
close to our result, but we do not need the extra index
space for the random access to the lists. We compared
this setup with the search engine from section 3. In
average the performance improved by 40%. Table 2
shows that the time needed for the verification reduced
significantly. Besides it was more balanced.

Table 2: Search speed (fingerprints with position
 lists).

Query Bit-

matrix
Time for
verification

Hits

rhinolo 230 ms 10 ms 18
sanfilipo 271 ms 0 ms 0
itracon 245 ms 15 ms 64
oxyuria 210 ms 12 ms 6

5 Fingerprint Compression
In order to compress the fingerprints we analysed

their density. Over 70% of the fingerprints have a
density less than 0.1, 20% are between 0.1 and 0.4 and
10% have a density greater than 0.4. Fingerprints,
which have an extremely low or high density, do not
contain much information. These fingerprints can be
compressed by simply reducing their resolution. This
equals to a convolution of the original fingerprint.
Figure 9 shows an example for a 4 x 4 fingerprint. This
fuzziness might in some cases lead to an incorrect
fingerprint for a query. But since all bit-positions of the
resulting fingerprint are being verified using the
position lists of each n-gram no false positive hits are
generated. It just slightly slows down the performance,
because additional requests for position lists, that do not
exist, have to be made.

1

1
0

0
0

1
0

00
0

0
0

0
00 0 0

1
11

11
0

0 0 0 0

1

Figure 9: Convolution of fingerprints.

We tried different thresholds of densities for the

convolution. If the density of a fingerprint was in the
defined range, we reduced its size by factor 2. Table 3
shows the relative performance loss and the relative
index reduction.

Furthermore we implemented a dictionary based
compression. Each column of a fingerprint was added to
a dictionary. The fingerprint now consists of multiple
references to this dictionary. This methodology
significantly reduced the size of the index. Especially
dense and sparse bitvectors had been reused frequently.

Table 3: Fingerprint compression.

Density threshold
for convolution

Performance
loss

Fingerprint
index reduction

no convolution 0 % 0 %
0-0,025 and 0.975-1 3.1 % 23 %
0-0.05 and 0.95-1 3.2 % 27 %
0-0.1 and 0.9-1 10 % 29 %
0-0.2 and 0.8-1 25 % 31 %

In combination with the convolution of fingerprints we
were able to reduce the space needed to index the
fingerprints by 50-60%. The dictionary based
compression reduced the performance only by 1-3%.

6 Conclusion and Future Work
Our experiments have shown that n-gram

fingerprints can be used to improve the performance
and the scalability of n-gram inverted indices. We
introduced techniques to optimize the index in a manner
so that common user queries can be processed more
efficiently. In standard n-gram indices a query is
splitted into n-grams that overlap the query. The posting
lists of all these n-grams have to be intersected to get
the final search result. With our technique we split these
posting lists into smaller lists. After combining the
fingerprints of the involved n-grams we know which of
these lists have to be intersected. Thereby we reduce the
complexity of the intersection and gain more
performance. We compressed the fingerprints that do
not contain a certain level of information and we were
able to reduce the fingerprint index size by 60% without
major loss of performance.

In the future we would like to combine our indexing
techniques with a word based inverted index in order to
profit from the advantages of using both n-grams and
words as indexing terms. We intend to split the text into
terms and save the posting lists in an index like in the
case of an inverted index. However we do not create a
binary tree over the terms. The terms will be indexed in
a second n-gram inverted index described in this work.
This way we do not lose the ability of searching for any
kind of substring in the document collection. Another
advantage is that stop words, which tend to flood the
posting lists of some n-grams, only occur once in the
term list of the first inverted index and thus fewer
postings for the affected n-grams have to be dealt with
in the second index. Using a word based inverted index
gives us further benefits. In n-gram inverted indices
ranking the results of a search is a difficult task. Since
n-grams generally do not hold semantic information,
only TF/IDF or field based ranking methods can be
used. Having words as index terms it is possible to
define a precomputed rank for each tupel (term,
document). Moreover index terms can be linked to each
other in order to map thesaurus information to the
index.

 98

 99

References
[1] Baeza-Yates R. and Ribeiro-Neto B.: Modern

Information Retrieval. ACM Press (1999)
[2] The Lucene search engine,

http://jakarta.apache.org/lucene/ (2005)
[3] Porter M. F.: An algorithm for suffix stripping.

Readings in Information Retrieval 14(3) (1980)
130–137.

[4] Snowball stemmers, http://snowball.tartarus.org/
(2003)

[5] Yasushi O. and Toru M.: Optimizing query
evaluation in n-gram indexing. In: Proceedings of
International Conference on Information Retrieval,
ACM SIGIR, Melbourne, Australia (1998) 367–
368

[6] Brown M. K., Kellner A., and Ragget D.:
Stochastic Language Models (N-Gram)
Specification. W3C Working Draft (2001)

[7] Miller E., Shen D., Liu J., and Nicholas C.:
Performance and Scalability of a Large-Scale N-
gram Based Information Retrieval System. In
Journal of Digital Information 1(5) (2000)

[8] Mayfield J. and McNamee P.: Single N-gram
Stemming. In: Proceedings of International
Conference on Information Retrieval, ACM
SIGIR, Toronto, Canada (2003) 415–416

[9] Witten I. H., Moffat A., and Bell T. C.: Managing
Gigabytes, second edition. Morgan Kaufmann.
(1999)

[10] Zobel J., Moffat, A.: Inverted files for text search
engines. ACM Computing Surveys 38(2) (2006)

[11] Zobel J., Moffat A., and Ramamohanarao K.:
Inverted Files versus Signature Files for Text
Indexing. ACM Trans. on Database Systems 23(4)
(1998) 453–490

[12] Cohen J. D.: Recursive Hashing Functions for n-
Grams. ACM Trans. on Information Systems.
15(3) (1997) 291–320

[13] Kim M.-S., Whang K.-Y., Lee J.-G., and Lee M.-
J.: n-Gram/2L: A space and time efficient two-
level n-gram inverted index structure. In:
Proceedings of VLDB. (2005) 325–336

[14] Choueka Y., Fraenkel A., Klein S., and Segal E.:
Improved techniques for processing queries in
full-text systems. In: Proceedings of the 10th
ACM SIGIR Conference. ACM Press. (1987)
306–315

[15] Faloutsos C., and Jagadish H. V.: Hybrid index
organizations for text databases. In: Proceedings
of the International Conference on Extending
Database Technology. LNCS, vol. 580, Springer.
(1992) 310–327

http://jakarta.apache.org/lucene/
http://snowball.tartarus.org/

