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Abstract 

The major advantage of the n-gram inverted 
index is the possibility to locate any given 
substring in a document collection. 
Nevertheless, the n-gram inverted index also 
has drawbacks: If the collections are getting 
bigger, this index tends to be very large and the 
performance drops significantly. We propose a 
novel technique of enhancing the performance 
of an n-gram inverted index with the use of 
additional fingerprints for each n-gram. A 
fingerprint contains information about the 
positions of an n-gram. When combining two 
or more n-grams, these fingerprints also 
provide information about the positions of the 
combination. This can be used to reduce the 
complexity of merging the n-gram postings 
lists for a given search and improves the 
performance of the n-gram inverted index. 
Furthermore it is possible to freely scale the 
size of the fingerprints in order to adjust the 
performance of the index. The size of a 
fingerprint is neither dependent of the size of 
the document collection nor the number of n-
grams. 

1 Introduction 
Text searching is regarded as one of the core subjects in 
Information Retrieval [1]. Many search engines (e.g. 
Lucene [2]) are building word based inverted indices 
for document retrieval. Thus the users of these search 
engines can only search for words. If only a substring of 
a term matches the given query, no results are being 
returned for this hit. Many word based search engines 
try to solve these problems by adding fuzziness to the 
index and to the query. While parsing documents every 
word is reduced to its radical. This is done by using 
stemmers [3,4] and by limiting the set of allowed 
characters. This procedure is also being applied to every 
query. This improves the recall, however it tends to 
reduce the precision of the search because words with 
different meaning can accidentally be mapped to the 

same radical. Even though this technique may perform 
well with documents containing conventional natural 
language it is not suited for terminologies. For example, 
if you think of the chemical substance “1,3-
Cyclooctadiene” it should also be possible to find this 
occurrence using the query “Cyclooctadiene”, because 
the usage of this specific isomer “1,3-Cyclooctadiene” 
is not common. So this word would be reduced to its 
radical “Cyclooctadiene“. The prefix “1,3-“ will be 
ignored. But since some users might however search for 
this specific isomer, this information has to be included 
in the index. That is where the inverted n-gram index 
[5,6,7] comes into play. It enables us to perform exact 
string matching, so that both queries mentioned above 
return the appropriate documents. An n-gram index 
divides the text of the document into overlapping 
substrings of the size 1 to n. For each n-gram the 
positions of all occurrences are stored in the index. The 
given query is divided into n-grams as well and the 
position lists of the affected n-grams are intersected to 
retrieve the positions of the query. Since the number of 
positions for an n-gram is always increasing while the 
document collection gets bigger, the performance of 
this index gets worse, because longer position lists have 
to be intersected (cp. [8]). First we tried to apply 
fingerprints to the n-grams, so that without storing any 
positions of the n-grams in the index decision could be 
made, whether the query does not hit a certain 
document, or might hit a document. In the second case 
verifications had to be made, if these documents match 
the query. Since this verification can worsen the 
performance, especially when many documents are 
being affected, we added additional information of the 
positions of the n-grams to the index, so that no 
verification was needed. With this technique we 
reduced the costs for intersecting the position lists of the 
n-grams. Another advantage is that we can adjust the 
performance of the index by changing the size of the 
fingerprints. This gives us the potential to scale the 
index according to the size of the document collection. 

2 Related Work 
A term based inverted index [9] consists of two major 
components: terms and posting lists (see Figure 1). 
Each term is linked to one posting list. A posting 
contains a document-identifier (fileID) and a position  
inside the document (offset). Besides, to get a fast 
access to the terms, an index such as a binary tree is 
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created over the terms [10,11]. A query is processed by 
the binary tree and then the posting list is being 
returned. This setup can only be used, if a query 
contains terms. But if the query contains substrings of 
terms, an n-gram index should be used. 

 
posting lists of terms

posting 

Binary Tree 
over the 
terms

fileID, (offset_1, ..., offset_n )  

Figure 1: inverted index.

 

 
An n-gram index (see Figure 2) does not use terms for 
indexing. The documents are divided into overlapping 
substrings of the size 1 to n. For each of these n-grams a 
posting list containing the positions of all occurrences is 
stored in the index. In order to get a fast access to the n-
grams, a trie or hashmap is used [12].  

 
posting lists of  n-grams n-grams

a
b
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ba

posting fileID, (offset_1, ..., offset_n )  

Figure 2: n-gram index.

 

 
Since all documents are covered by only including the 
uno-grams to the index, not all of the n-grams (n>=2) 
have to be included to the index. Adding more n-grams 
to the index increases the performance but also 
increases the index size. 
The query is splitted in n-grams in a manner that the 
combination of these n-grams overlaps the query. After 
that the posting lists of these n-grams are being 
intersected. For example the positions for 
the substring w1w2 can be calculated with the positions 
of the 1-grams w1 and w2: 
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If the document collection gets bigger, the posting 

lists get bigger as well. This significantly reduces the 
performance. An n-gram index grows multiple times 
faster compared to a word based inverted index. While 
in a word based index every additional term occurrence 
creates one new posting, in a n-gram index multiple 
postings have to be added because all posting lists of 
affected n-grams have to be updated. Kim et Al. [13] 
introduced a technique of adding a second m-gram layer 
to the index. The documents were at first splittet into m-
grams and these m-grams were indexed using n-grams. 

Choueka et Al. [14] presented a search index that 
uses bitmaps which act as an “occurrence” map. To 
each word a bitvector has been assigned. This vector 
has the same length as the number of documents and 
each bit identifies an occurrence of a term in a specific 
document. With this technique the offsets of the terms 
within the documents are discarded. Furthermore the 
size of this index increases rapidly for large document 
collections since the number of terms and the size of the 
bitvectors are getting bigger. Choueka et Al. [14] as 
well as Faloutsos [15] also introduced a hybrid index 
organization so that infrequent terms were treated 
differently to reduce the size of the index. 

Signature files [1][9] are using a similar approach 
but the size of the bitvector is independent from the 
number of documents. Signature files are also word-
oriented and are based on hashing. A hash function 
maps a word to a bit mask. The collection is split into 
blocks and to each block a bit mask is assigned by 
ORing the signatures of all the words in the text block. 
A search is carried out by comparing the signature of 
the query to the bitmasks of all blocks. 

In this paper we want to propose a technique using 
fingerprints to increase the performance of an n-gram 
index. The size of these fingerprints can be freely 
selected like in signature files and each bit in the 
fingerprint gives information about the position of an n-
gram like in the bitmap index. Furthermore these 
fingerprints can by combined with the approach that 
uses only posting lists in order to achieve a better 
performance. 

3 n-Gram Fingerprints 
Since the sizes of posting lists of n-grams are 

enormous when indexing large document collections we 
introduced a so called fingerprint for each n-gram that 
contains information about the positions of the n-gram 
and that can easily be compared to other fingerprints in 
order to give information about the positions of the 
combination of these n-grams. A fingerprint for an n-
gram w is a two-dimensional bit-matrix Bw of the size    
f  Ч o. A bit bi,j is set to 1 if there is an occurrence p ∈ 
pos(w) where fileID(p) mod f = i and offset(p) mod o = 
j. 

 
 

 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

−−

−

1,10,

1,00,0

off

o

w

bb

bb
B

L

MOM

L

 
( ) ( )

( )
⎪⎩

⎪
⎨
⎧

=
∧=∈∃

=
                                          o:0

mod                           
mod::1

,

therwise
jopoffset
ifpfileidwposp

b ji

 
 
Each bit-position is representing a collection of 

positions that match the above criteria (see Figure 3). 
Given two 1-grams w1 and w2 and their respective 

pos )( nw Σ∈
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fingerprints Bw1 and Bw2 we can approximate the 
fingerprint Bw1w2: 

 
212121 '' wwwwww BBBB ∧=≈  

 
B’w2 is constructed by cyclic shifting each column 

of Bw2 by one position to the left. This is done in order 
to compensate the offset of the second 1-gram in 
relation to the first n-gram. The matrices Bw1 and B’w2 
are combined bitwise with AND (∧) to get B’w1w2.  We 
can guarantee that every bit that is set in Bw1w2 is also 
set in B’w1w2. However B’w1w2 may contain bits that are 
set in B’w1w2 but not in Bw1w2.  
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Figure 3: n-gram fingerprint.

 

 
To perform a search we have to split the query into 

n-grams. To get the best results we use as many n-
grams as possible. But we can skip n-grams that are 
included by another n-gram because the bits set in their 
fingerprints are only supersets of the bits set in the 
superior n-gram. If we would index for example all 3-
grams of a given document collection we would split 
the query in the same manner, so a query of length n, 
would be split in n-2 3-grams. This technique is 
different to the standard n-gram search where a query is 
splitted into as few n-grams as possible. After that, the 
fingerprints of these n-grams are being loaded from the 
index and the columns of these fingerprints are cyclic-
shifted to the left by the relative position of the 
respective n-gram to the first n-gram of the query. 
These fingerprints are combined with AND. The 
resulting fingerprint represents a collection of positions 
where the query might occur. To verify the results, 
these positions have to be checked against the query. 
This is done by opening the involved documents and 
comparing the local context of the positions to the 
query.  We tested this setup on the “Online 
Encyclopaedia of Dermatology from P. Altmeyer”. This 
collection contains over 7500 documents. Furthermore 
we had the access to the querylog and could test the 
performance of our new setup with real user data. We 
created an index with f = 1024 and o = 128. Table 1 
shows some of the resulting search speeds. The time for 
the combination of the bit-matrixes is only dependent of 
the length of the query. But the time for the verification 
of the positions depends on the number of bits set in the 
fingerprint of the search result. This can be problematic 
if a user is searching for a substring, which occurs 

multiple times in every document. The resulting bit-
matrix of this query is very dense and thus many 
positions have to be verified, which leads to a poor 
performance.  

 
Table 1: Search speed.  
 

Query Bit-
matrix 

Time for 
verification 

Hits 

rhinolo 219 ms 94 ms 18 
sanfilipo 290 ms 0 ms 0 
itracon 266 ms 336 ms 64 
oxyuria 197 ms 48 ms 6 

 
Since the size of the fingerprints can be adjusted by 

changing the parameters o or f and the number of n-
grams can be limited (see section 2) the size of this 
index is independent from the number of documents in 
the collection. However it is recommend to increase the 
size of the fingerprints when indexing large collections. 
Large collections are leading to dense fingerprints 
which result in a low filtration ability. 

4 n-Gram Fingerprints in Combination 
with Posting Lists 
Analyses of user queries (see Figure 4) showed that 
most users do not search for very frequent terms. 10% 
of the queries hit 400 different terms with frequencies 
between 150 and 2000. The remaining 90% of the 
queries were almost equally distributed over the 
remaining 170.000 terms. However the most of the time 
of a search was needed for the verifications of hits.  
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Figure 4: Term frequency in documents and queries.

 

 
In the next step we combined the standard n-gram 

search with our fingerprinting technique. When creating 
a fingerprint for an n-gram we assign a bit to every 
posting of an occurrence of the n-gram. Thus we also 
partitioned the postings into smaller subsets. If we do 
not discard these lists, we can use them for the 
verification process. For each n-gram the partitioned 
posting lists were added to the index (see Figure 5).  
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Figure 5: Combination of fingerprints and posting lists.

 

 
If f and o are multiples of 2 we do not have to 

include the last log2(f) bits of the fileID and the last 
log2(o) bits of the offset to the posting, because this 
information is already included by the residue class (see 
Figure 5).  

The bitwise AND combination of the fingerprints of 
the affected n-grams for a query shows which subsets of 
posting lists have to be intersected. On the one hand we 
reduce the cost for the intersection of the postings since 
only a few of the smaller subsets have to be intersected 
instead of a complete posting list for an n-gram. On the 
other hand we have to deal with much more lists. Our 
test corpus has been indexed with 1024 residue classes 
for the fileID and 128 for the offset. As a result we get 
131.072 subsets of posting lists for each n-gram. We 
included 14.000 different (1-3)-grams in our index, 
which made 18.350.080.000 different lists in total. Most 
of these lists are empty or have only a few entries. In 
order to reduce the overhead, which is necessary for 
handling this large number of posting lists, we used a 
file based hash table (see Figure 6). The hash value for 
a given list was computed as a function of the residue 
classes of fileID and offset: 

 
( ) oijposh ji ⋅+=,  

 
This way the posting lists of n-grams occuring 

nearby are also stored close to each other in the index. 
In this case i (the residue class for the fileID) is constant 
and j (the residue class for the offset) only differs by the 
distance (mod o) of the n-grams. Thus the hash value 
differs also only by the distance. 
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Figure 6: Managing the n-gram posting lists.

 

 

The main disadvantage of this technique is that the 
set of possible hash values in the hash table is rather 
small and the hashing function produces many 
collisions. In our index for the “Online Encyclopaedia 
of Dermatology from P. Altmeyer” we had 25 collisions 
in average. That means in average 12.5 lists had to be 
processed until the desired list was found.  

If we take a look at the frequency of n-grams in the 
documents and in the queries of our collection we see, 
that many n-grams are rarely used in the queries (see 
Figure 7). We can use this information to define a 
ranking by which the posting lists sharing the same 
hash value can be sorted. This way we should get a 
faster access to the hash table for ordinary queries. In 
order to measure the performance of this methodology 
we used 5000 user queries to define the ranking of the 
n-grams. We then used 5000 different user queries to 
test the performance of the hash. We came to the result 
that in average only 5 lists had to be processed 
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Figure 7: n-gram frequency in documents and queries.
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Figure 8: Hash collisions and collision resolution. 

 
in order to retrieve the desired list (see Figure 8). This 
improved the performance of the hash by a factor of 
2.5. This is a great result since we would need 4.6 
comparisons in average to retrieve the requested list, if 
we would have random access to the different lists in 
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one hash entry (which requires more space for the 
index) and could perform a binary search. This is very 
close to our result, but we do not need the extra index 
space for the random access to the lists. We compared 
this setup with the search engine from section 3. In 
average the performance improved by 40%. Table 2 
shows that the time needed for the verification reduced 
significantly. Besides it was more balanced. 
 

Table 2: Search speed (fingerprints with position 
 lists). 

 
Query Bit-

matrix 
Time for 
verification 

Hits 

rhinolo 230 ms 10 ms 18 
sanfilipo 271 ms 0 ms 0 
itracon 245 ms 15 ms 64 
oxyuria 210 ms 12 ms 6 

 

5 Fingerprint Compression 
In order to compress the fingerprints we analysed 

their density. Over 70% of the fingerprints have a 
density less than 0.1, 20% are between 0.1 and 0.4 and 
10% have a density greater than 0.4. Fingerprints, 
which have an extremely low or high density, do not 
contain much information. These fingerprints can be 
compressed by simply reducing their resolution. This 
equals to a convolution of the original fingerprint. 
Figure 9 shows an example for a 4 x 4 fingerprint. This 
fuzziness might in some cases lead to an incorrect 
fingerprint for a query. But since all bit-positions of the 
resulting fingerprint are being verified using the 
position lists of each n-gram no false positive hits are 
generated. It just slightly slows down the performance, 
because additional requests for position lists, that do not 
exist, have to be made. 
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Figure 9: Convolution of fingerprints.

 

 
We tried different thresholds of densities for the 

convolution. If the density of a fingerprint was in the 
defined range, we reduced its size by factor 2. Table 3 
shows the relative performance loss and the relative 
index reduction. 

Furthermore we implemented a dictionary based 
compression. Each column of a fingerprint was added to 
a dictionary. The fingerprint now consists of multiple 
references to this dictionary. This methodology 
significantly reduced the size of the index. Especially 
dense and sparse bitvectors had been reused frequently. 
 

 
 

Table 3: Fingerprint compression. 
 

Density threshold 
for convolution 

Performance 
loss 

Fingerprint 
index reduction 

no convolution 0 % 0 % 
0-0,025 and 0.975-1 3.1 % 23 % 
0-0.05 and 0.95-1 3.2 % 27 % 
0-0.1 and 0.9-1  10 % 29 % 
0-0.2 and 0.8-1 25 % 31 % 

 
In combination with the convolution of fingerprints we 
were able to reduce the space needed to index the 
fingerprints by 50-60%. The dictionary based 
compression reduced the performance only by 1-3%. 

 

6 Conclusion and Future Work 
Our experiments have shown that n-gram 

fingerprints can be used to improve the performance 
and the scalability of n-gram inverted indices. We 
introduced techniques to optimize the index in a manner 
so that common user queries can be processed more 
efficiently. In standard n-gram indices a query is 
splitted into n-grams that overlap the query. The posting 
lists of all these n-grams have to be intersected to get 
the final search result. With our technique we split these 
posting lists into smaller lists. After combining the 
fingerprints of the involved n-grams we know which of 
these lists have to be intersected. Thereby we reduce the 
complexity of the intersection and gain more 
performance. We compressed the fingerprints that do 
not contain a certain level of information and we were 
able to reduce the fingerprint index size by 60% without 
major loss of performance.  

In the future we would like to combine our indexing 
techniques with a word based inverted index in order to 
profit from the advantages of using both n-grams and 
words as indexing terms. We intend to split the text into 
terms and save the posting lists in an index like in the 
case of an inverted index. However we do not create a 
binary tree over the terms. The terms will be indexed in 
a second n-gram inverted index described in this work. 
This way we do not lose the ability of searching for any 
kind of substring in the document collection. Another 
advantage is that stop words, which tend to flood the 
posting lists of some n-grams, only occur once in the 
term list of the first inverted index and thus fewer 
postings for the affected n-grams have to be dealt with 
in the second index. Using a word based inverted index 
gives us further benefits. In n-gram inverted indices 
ranking the results of a search is a difficult task. Since 
n-grams generally do not hold semantic information, 
only TF/IDF or field based ranking methods can be 
used. Having words as index terms it is possible to 
define a precomputed rank for each tupel (term, 
document). Moreover index terms can be linked to each 
other in order to map thesaurus information to the 
index. 
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