Optimal strategies in the best choice problem with disorder

Vladimir V. Mazalov, Evgeny E. Ivashko

September 13, 2010

• A production system generates a sequence of n i.i.d. random variables $X_1, X_2, ..., X_{\theta-1}, X_{\theta}, X_{\theta+1}, ..., X_n$;

- A production system generates a sequence of n i.i.d. random variables $X_1, X_2, ..., X_{\theta-1}, X_{\theta}, X_{\theta+1}, ..., X_n$;
- ullet in the random time heta the disorder happens and the distribution law changes:

```
X_1, X_2, ..., X_{\theta-1} have absolutely continuous CDF F_1(x) (state S_1), X_{\theta}, X_{\theta+1}, ..., X_n have absolutely continuous CDF F_2(x) (state S_2);
```

- A production system generates a sequence of n i.i.d. random variables $X_1, X_2, ..., X_{\theta-1}, X_{\theta}, X_{\theta+1}, ..., X_n$;
- ullet in the random time heta the disorder happens and the distribution law changes:
 - $X_1, X_2, ..., X_{\theta-1}$ have absolutely continuous CDF $F_1(x)$ (state S_1), $X_{\theta}, X_{\theta+1}, ..., X_n$ have absolutely continuous CDF $F_2(x)$ (state S_2);
- the moment of disorder θ has geometric distribution with parameter $1-\alpha$ (i.e. $P(\theta=k)=\alpha^{k-1}(1-\alpha)$);

- A production system generates a sequence of n i.i.d. random variables $X_1, X_2, ..., X_{\theta-1}, X_{\theta}, X_{\theta+1}, ..., X_n$;
- ullet in the random time heta the disorder happens and the distribution law changes:
 - $X_1, X_2, ..., X_{\theta-1}$ have absolutely continuous CDF $F_1(x)$ (state S_1), $X_{\theta}, X_{\theta+1}, ..., X_n$ have absolutely continuous CDF $F_2(x)$ (state S_2);
- the moment of disorder θ has geometric distribution with parameter $1-\alpha$ (i.e. $P(\theta=k)=\alpha^{k-1}(1-\alpha)$);
- a decision-maker observes sequentially one-by-one the random variables with the aim of choosing the largest;

- A production system generates a sequence of n i.i.d. random variables $X_1, X_2, ..., X_{\theta-1}, X_{\theta}, X_{\theta+1}, ..., X_n$;
- ullet in the random time heta the disorder happens and the distribution law changes:

$$X_1, X_2, ..., X_{\theta-1}$$
 have absolutely continuous CDF $F_1(x)$ (state S_1), $X_{\theta}, X_{\theta+1}, ..., X_n$ have absolutely continuous CDF $F_2(x)$ (state S_2);

- the moment of disorder θ has geometric distribution with parameter 1α (i.e. $P(\theta = k) = \alpha^{k-1}(1 \alpha)$);
- a decision-maker observes sequentially one-by-one the random variables with the aim of choosing the largest;
- after the each sampling the decision-maker have to decide: to STOP or to CONTINUE:

- A production system generates a sequence of n i.i.d. random variables $X_1, X_2, ..., X_{\theta-1}, X_{\theta}, X_{\theta+1}, ..., X_n$;
- ullet in the random time heta the *disorder* happens and the distribution law changes:
 - $X_1, X_2, ..., X_{\theta-1}$ have absolutely continuous CDF $F_1(x)$ (state S_1), $X_{\theta}, X_{\theta+1}, ..., X_n$ have absolutely continuous CDF $F_2(x)$ (state S_2);
- the moment of disorder θ has geometric distribution with parameter 1α (i.e. $P(\theta = k) = \alpha^{k-1}(1 \alpha)$);
- a decision-maker observes sequentially one-by-one the random variables with the aim of choosing the largest;
- after the each sampling the decision-maker have to decide: to STOP or to CONTINUE:
 - STOP: accept the value and stop the observation process;

- A production system generates a sequence of n i.i.d. random variables $X_1, X_2, ..., X_{\theta-1}, X_{\theta}, X_{\theta+1}, ..., X_n$;
- ullet in the random time heta the disorder happens and the distribution law changes:
 - $X_1, X_2, ..., X_{\theta-1}$ have absolutely continuous CDF $F_1(x)$ (state S_1), $X_{\theta}, X_{\theta+1}, ..., X_n$ have absolutely continuous CDF $F_2(x)$ (state S_2);
- the moment of disorder θ has geometric distribution with parameter $1-\alpha$ (i.e. $P(\theta=k)=\alpha^{k-1}(1-\alpha)$);
- a decision-maker observes sequentially one-by-one the random variables with the aim of choosing the largest;
- after the each sampling the decision-maker have to decide: to STOP or to CONTINUE:
 - STOP: accept the value and stop the observation process; CONTINUE: reject the observation and observe the next r.v.

- A production system generates a sequence of n i.i.d. random variables $X_1, X_2, ..., X_{\theta-1}, X_{\theta}, X_{\theta+1}, ..., X_n$;
- ullet in the random time heta the disorder happens and the distribution law changes:

$$X_1, X_2, ..., X_{\theta-1}$$
 have absolutely continuous CDF $F_1(x)$ (state S_1), $X_{\theta}, X_{\theta+1}, ..., X_n$ have absolutely continuous CDF $F_2(x)$ (state S_2);

- the moment of disorder θ has geometric distribution with parameter 1α (i.e. $P(\theta = k) = \alpha^{k-1}(1 \alpha)$);
- a decision-maker observes sequentially one-by-one the random variables with the aim of choosing the largest;
- after the each sampling the decision-maker have to decide: to STOP or to CONTINUE:
 - STOP: accept the value and stop the observation process; CONTINUE: reject the observation and observe the next r.v.
- The rejected observation cannot be recalled later;

• λ (0 < λ < 1) is the discount factor: if the decision-maker accepts the r.v. X_k she gets the value $\lambda^{k-1}X_k$;

- λ (0 < λ < 1) is the discount factor: if the decision-maker accepts the r.v. X_k she gets the value $\lambda^{k-1}X_k$;
- the r.v. cannot be perfectly observed. Each time a r.v. is sampled the sampler is informed only whether it is greater than or less than some level specified by her:

- λ (0 < λ < 1) is the discount factor: if the decision-maker accepts the r.v. X_k she gets the value $\lambda^{k-1}X_k$;
- the r.v. cannot be perfectly observed. Each time a r.v. is sampled the sampler is informed only whether it is greater than or less than some level specified by her;
- a decision-maker knows parameters λ, α and n, but the real state of the system is unknown;

- λ (0 < λ < 1) is the discount factor: if the decision-maker accepts the r.v. X_k she gets the value $\lambda^{k-1}X_k$;
- the r.v. cannot be perfectly observed. Each time a r.v. is sampled the sampler is informed only whether it is greater than or less than some level specified by her;
- a decision-maker knows parameters λ , α and n, but the real state of the system is unknown;

Goal: maximize the expected value of the accepted observation.

Strategy

We find the solution in the class of the following strategies. Each moment k $(1 \le k \le n)$ the observer estimates the *a posterior* probability of the current state and specifies the threshold $s_k = s_k(x_1, \ldots, x_{k-1})$.

The decision-maker accepts the observation x_k if and only if it is greater than the corresponding threshold s_k .

The observer estimates the current state of the system using the Byes' formula:

The observer estimates the current state of the system using the Byes' formula:

$$\pi_s = \pi(s) = P\{S_1 | x \le s\} = \frac{P(S_1)P(x \le s | S_1)}{P(x \le s)} = \frac{\alpha \pi F_1(s)}{F_{\pi}(s)}.$$

The observer estimates the current state of the system using the Byes' formula:

$$\pi_s = \pi(s) = P\{S_1 | x \le s\} = \frac{P(S_1)P(x \le s | S_1)}{P(x \le s)} = \frac{\alpha \pi F_1(s)}{F_{\pi}(s)}.$$

Here

- $s = s_i$ is the threshold specified by the decision-maker within i steps till end (i.e. at the step n i);
- π is the *a prior* probability of the state S_1 (i.e. *before* getting the information that $x \leq s$);
- π_s is the *a posterior* probability of the state S_1 (i.e. *after* getting the information that $x \le s$);
- $F_{\pi}(s) = \pi F_1(s) + \overline{\pi} F_2(s)$;
- \bullet $\overline{\pi} = 1 \pi$.

We use the dynamic programming approach to derive the optimal strategy.

We use the dynamic programming approach to derive the optimal strategy.

Let $v_i(\pi)$ is the payoff that the observer expects to receive using the optimal strategy within i steps till end. The optimality equation:

$$\begin{cases} v_{i}(\pi) &= \max_{s} E\left[\lambda v_{i-1}(\pi_{s})I_{x \leq s} + xI_{x > s}\right] \\ &= \max_{s} \left[\lambda v_{i-1}(\pi_{s})F_{\pi}(s) + \pi E_{1}(s) + \overline{\pi} E_{2}(s)\right], \ i \geq 1, \\ v_{0}(\pi) &= 0 \ \forall \pi. \end{cases}$$
(1)

Here
$$E_k(s) = \int_s^\infty x dF_k(x), \ k = 1, 2 \text{ and}$$

$$I_{a < b} = \begin{cases} 1, & \text{if } a < b \\ 0, & \text{otherwise} \end{cases}$$

The following theorem gives the view of the expected payoff in linear form on π .

Theorem 1. For any i the function $v_i(\pi)$ could be written if the form

$$v_i(\pi) = \pi A_i(s_1,...,s_i) + B_i(s_1,...,s_i),$$

where

$$s_i = s_i(\pi) = \arg\max_s \left[\lambda v_{i-1}(\pi_s) F_{\pi}(s) + \pi E_1(s) + \overline{\pi} E_2(s) \right], \ i \ge 1, 0 \le \pi \le 1.$$

The following theorem gives the view of the expected payoff in linear form on π .

Theorem 1. For any i the function $v_i(\pi)$ could be written if the form

$$v_i(\pi) = \pi A_i(s_1,...,s_i) + B_i(s_1,...,s_i),$$

where

$$s_i = s_i(\pi) = \arg\max_{s} [\lambda v_{i-1}(\pi_s) F_{\pi}(s) + \pi E_1(s) + \overline{\pi} E_2(s)], \ i \ge 1, 0 \le \pi \le 1.$$

The theorem can be proved by induction.

We prove the following lemma.

Lemma. As $i \to \infty$ there is a limit of the expected payoff $v_i(\pi) \to v(\pi)$.

We prove the following lemma.

Lemma. As $i \to \infty$ there is a limit of the expected payoff $v_i(\pi) \to v(\pi)$. **Corollary.** From the theorem 1 and lemma one can show that there are such A and B that

$$\lim_{i \to \infty} v_i(\pi) = \lim_{i \to \infty} (\pi A(s_1, ..., s_i) + B(s_1, ..., s_i)) = \pi A + B = v(\pi).$$

Theorem 2. For $i \to \infty$ the solution of the full-information best choice problem with disorder is defined as

$$v(\pi) = \max_{s} (\pi A + B),$$

where

$$s = s(\pi) = \arg\max_{s}(\pi A + B)$$

and

$$A = \frac{E_1(s)(1 - \lambda F_2(s)) - E_2(s)(1 - \lambda F_1(s))}{(1 - \lambda F_2(s))(1 - \lambda \alpha F_1(s))}$$

$$B = \frac{E_2(s)}{1 - \lambda F_2(s)}.$$

Consider the examples of using the Bayes' strategy B comparing with two strategies with constant thresholds that not depend on π .

Consider the examples of using the Bayes' strategy B comparing with two strategies with constant thresholds that not depend on π . Let r.v. $X_1,...,X_n$ have the normal distribution where functions $F_1(x)$ and $F_2(x)$ have the variance $\sigma^2=1$ and the expectation $\mu_1=10$ and $\mu_2=9$ respectively for the S_1 and S_2 states.

Consider the examples of using the Bayes' strategy B comparing with two strategies with constant thresholds that not depend on π .

Let r.v. $X_1,...,X_n$ have the normal distribution where functions $F_1(x)$ and $F_2(x)$ have the variance $\sigma^2=1$ and the expectation $\mu_1=10$ and $\mu_2=9$ respectively for the S_1 and S_2 states.

Strategies A_1 and A_2 with constant thresholds s:

$$s = \frac{E(s)}{1 - \lambda F(s)},$$

where $F(s) \equiv F_1(s)$ and $E(s) \equiv E_1(s)$ for the strategy A_1 ; $F(s) \equiv F_2(s)$ and $E(s) \equiv E_2(s)$ for the strategy A_2 .

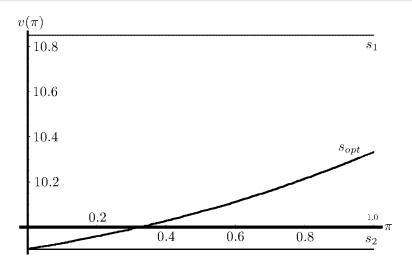


Figure: Graphics of the optimal thresholds for strategies A_1 , A_2 and B for $\alpha=0.9$, $\lambda=0.99$

The following figure shows the numerical results of the expected payoffs of the observer who use the strategies A_1 , A_2 and B (thresholds s_1 , s_2 and s_{opt} respectively).

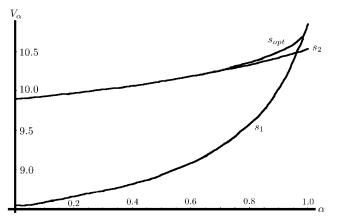


Figure: Expected payoffs of the observer who use the strategies A_1 , A_2 and B α for $\lambda=0.99$

Bibliography

- M. Sakaguchi. A best-choice problem for a production system which deteriorates at a disorder time //Scientiae Mathematicae Japonicae Vol. 54, No. 1, pp. 125-134.
- Z. Porosinski and K. Szajowski. Random priority two-person full-information best choice problem with imperfect observation // Applicationes Mathematicae, 27 (3), 2000, pp. 251-263.
- P. Neumann, Z. Porosinski, K. Szajowski. On two-person full-information best-choice problem with imperfect observation // Nova Journal of Mathematics, Game Theory and Algebra, 1996.
- V. Mazalov, E. Ivashko. Best-choice problem with disorder // Surveys in Applied and Industrial Mathematics, V. 14, Iss. 2, 2007, pp. 215-224 (in russian).
- V. Mazalov, E. Ivashko. Bayes' model in the best-choice problem with disorder // Vestnik of SPbGU. 10, Iss. 4, 2009, pp. 142-151 (in russian).