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Best choice problem with disorder and imperfect

observation

A production system generates a sequence of n i.i.d. random
variables X1, X2, ..., Xθ−1, Xθ, Xθ+1, ..., Xn;
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Best choice problem with disorder and imperfect

observation

A production system generates a sequence of n i.i.d. random
variables X1, X2, ..., Xθ−1, Xθ, Xθ+1, ..., Xn;

in the random time θ the disorder happens and the distribution law
changes:
X1, X2, ..., Xθ−1 have absolutely continuous CDF F1(x) (state S1),
Xθ, Xθ+1, ..., Xn have absolutely continuous CDF F2(x) (state S2);
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Best choice problem with disorder and imperfect

observation

A production system generates a sequence of n i.i.d. random
variables X1, X2, ..., Xθ−1, Xθ, Xθ+1, ..., Xn;

in the random time θ the disorder happens and the distribution law
changes:
X1, X2, ..., Xθ−1 have absolutely continuous CDF F1(x) (state S1),
Xθ, Xθ+1, ..., Xn have absolutely continuous CDF F2(x) (state S2);

the moment of disorder θ has geometric distribution with parameter
1 − α (i.e. P(θ = k) = αk−1(1 − α));
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Best choice problem with disorder and imperfect

observation

A production system generates a sequence of n i.i.d. random
variables X1, X2, ..., Xθ−1, Xθ, Xθ+1, ..., Xn;

in the random time θ the disorder happens and the distribution law
changes:
X1, X2, ..., Xθ−1 have absolutely continuous CDF F1(x) (state S1),
Xθ, Xθ+1, ..., Xn have absolutely continuous CDF F2(x) (state S2);

the moment of disorder θ has geometric distribution with parameter
1 − α (i.e. P(θ = k) = αk−1(1 − α));

a decision-maker observes sequentially one-by-one the random
variables with the aim of choosing the largest;
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Best choice problem with disorder and imperfect

observation

A production system generates a sequence of n i.i.d. random
variables X1, X2, ..., Xθ−1, Xθ, Xθ+1, ..., Xn;

in the random time θ the disorder happens and the distribution law
changes:
X1, X2, ..., Xθ−1 have absolutely continuous CDF F1(x) (state S1),
Xθ, Xθ+1, ..., Xn have absolutely continuous CDF F2(x) (state S2);

the moment of disorder θ has geometric distribution with parameter
1 − α (i.e. P(θ = k) = αk−1(1 − α));

a decision-maker observes sequentially one-by-one the random
variables with the aim of choosing the largest;

after the each sampling the decision-maker have to decide: to STOP
or to CONTINUE:

Vladimir V. Mazalov, Evgeny E. Ivashko Optimal strategies in the best choice problem with disorder



Best choice problem with disorder and imperfect

observation

A production system generates a sequence of n i.i.d. random
variables X1, X2, ..., Xθ−1, Xθ, Xθ+1, ..., Xn;

in the random time θ the disorder happens and the distribution law
changes:
X1, X2, ..., Xθ−1 have absolutely continuous CDF F1(x) (state S1),
Xθ, Xθ+1, ..., Xn have absolutely continuous CDF F2(x) (state S2);

the moment of disorder θ has geometric distribution with parameter
1 − α (i.e. P(θ = k) = αk−1(1 − α));

a decision-maker observes sequentially one-by-one the random
variables with the aim of choosing the largest;

after the each sampling the decision-maker have to decide: to STOP
or to CONTINUE:
STOP: accept the value and stop the observation process;
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Best choice problem with disorder and imperfect

observation

A production system generates a sequence of n i.i.d. random
variables X1, X2, ..., Xθ−1, Xθ, Xθ+1, ..., Xn;

in the random time θ the disorder happens and the distribution law
changes:
X1, X2, ..., Xθ−1 have absolutely continuous CDF F1(x) (state S1),
Xθ, Xθ+1, ..., Xn have absolutely continuous CDF F2(x) (state S2);

the moment of disorder θ has geometric distribution with parameter
1 − α (i.e. P(θ = k) = αk−1(1 − α));

a decision-maker observes sequentially one-by-one the random
variables with the aim of choosing the largest;

after the each sampling the decision-maker have to decide: to STOP
or to CONTINUE:
STOP: accept the value and stop the observation process;
CONTINUE: reject the observation and observe the next r.v.
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Best choice problem with disorder and imperfect

observation

A production system generates a sequence of n i.i.d. random
variables X1, X2, ..., Xθ−1, Xθ, Xθ+1, ..., Xn;

in the random time θ the disorder happens and the distribution law
changes:
X1, X2, ..., Xθ−1 have absolutely continuous CDF F1(x) (state S1),
Xθ, Xθ+1, ..., Xn have absolutely continuous CDF F2(x) (state S2);

the moment of disorder θ has geometric distribution with parameter
1 − α (i.e. P(θ = k) = αk−1(1 − α));

a decision-maker observes sequentially one-by-one the random
variables with the aim of choosing the largest;

after the each sampling the decision-maker have to decide: to STOP
or to CONTINUE:
STOP: accept the value and stop the observation process;
CONTINUE: reject the observation and observe the next r.v.

The rejected observation cannot be recalled later;
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Best choice problem with disorder and imperfect

observation
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Best choice problem with disorder and imperfect

observation

λ (0 < λ < 1) is the discount factor: if the decision-maker accepts
the r.v. Xk she gets the value λk−1Xk ;
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Best choice problem with disorder and imperfect

observation

λ (0 < λ < 1) is the discount factor: if the decision-maker accepts
the r.v. Xk she gets the value λk−1Xk ;

the r.v. cannot be perfectly observed. Each time a r.v. is sampled
the sampler is informed only whether it is greater than or less than
some level specified by her;
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the r.v. Xk she gets the value λk−1Xk ;

the r.v. cannot be perfectly observed. Each time a r.v. is sampled
the sampler is informed only whether it is greater than or less than
some level specified by her;

a decision-maker knows parameters λ,α and n, but the real state of
the system is unknown;
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Best choice problem with disorder and imperfect

observation

λ (0 < λ < 1) is the discount factor: if the decision-maker accepts
the r.v. Xk she gets the value λk−1Xk ;

the r.v. cannot be perfectly observed. Each time a r.v. is sampled
the sampler is informed only whether it is greater than or less than
some level specified by her;

a decision-maker knows parameters λ,α and n, but the real state of
the system is unknown;

Goal : maximize the expected value of the accepted observation.
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Strategy

We find the solution in the class of the following strategies.
Each moment k (1 ≤ k ≤ n) the observer estimates the a posterior

probability of the current state and specifies the threshold
sk = sk(x1, . . . , xk−1).
The decision-maker accepts the observation xk if and only if it is greater
than the corresponding threshold sk .
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Gain function

The observer estimates the current state of the system using the Byes’
formula:
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Gain function

The observer estimates the current state of the system using the Byes’
formula:

πs = π(s) = P{S1|x ≤ s} =
P(S1)P(x ≤ s|S1)

P(x ≤ s)
=

απF1(s)

Fπ(s)
.

Vladimir V. Mazalov, Evgeny E. Ivashko Optimal strategies in the best choice problem with disorder



Gain function

The observer estimates the current state of the system using the Byes’
formula:

πs = π(s) = P{S1|x ≤ s} =
P(S1)P(x ≤ s|S1)

P(x ≤ s)
=

απF1(s)

Fπ(s)
.

Here

s = si is the threshold specified by the decision-maker within i steps
till end (i.e. at the step n − i);

π is the a prior probability of the state S1 (i.e. before getting the
information that x ≤ s);

πs is the a posterior probability of the state S1 (i.e. after getting
the information that x ≤ s);

Fπ(s) = πF1(s) + πF2(s);

π = 1 − π.
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Gain function

We use the dynamic programming approach to derive the optimal
strategy.
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Gain function

We use the dynamic programming approach to derive the optimal
strategy.
Let vi (π) is the payoff that the observer expects to receive using the
optimal strategy within i steps till end. The optimality equation:











vi (π) = max
s

E [λvi−1(πs)Ix≤s + xIx>s ]

= max
s

[λvi−1(πs)Fπ(s) + πE1(s) + πE2(s)] , i ≥ 1,

v0(π) = 0 ∀π.

(1)

Here

Ek(s) =
∞
∫

s

xdFk(x), k = 1, 2 and

Ia<b =

{

1, if a < b

0, otherwise
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Gain function – Theorem 1

The following theorem gives the view of the expected payoff in linear
form on π.
Theorem 1. For any i the function vi (π) could be written if the form

vi (π) = πAi (s1, ..., si ) + Bi (s1, ..., si),

where

si = si (π) = arg max
s

[λvi−1(πs)Fπ(s)+πE1(s)+πE2(s)] , i ≥ 1, 0≤π≤1.
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Gain function – Theorem 1

The following theorem gives the view of the expected payoff in linear
form on π.
Theorem 1. For any i the function vi (π) could be written if the form

vi (π) = πAi (s1, ..., si ) + Bi (s1, ..., si),

where

si = si (π) = arg max
s

[λvi−1(πs)Fπ(s)+πE1(s)+πE2(s)] , i ≥ 1, 0≤π≤1.

The theorem can be proved by induction.
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Gain function – Theorem 2

We prove the following lemma.
Lemma. As i → ∞ there is a limit of the expected payoff vi (π) → v(π).
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Gain function – Theorem 2

We prove the following lemma.
Lemma. As i → ∞ there is a limit of the expected payoff vi (π) → v(π).
Corollary. From the theorem 1 and lemma one can show that there are

such A and B that

lim
i→∞

vi (π) = lim
i→∞

(πA(s1, ..., si) + B(s1, ..., si)) = πA + B = v(π).
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Gain function – Theorem 2

Theorem 2. For i → ∞ the solution of the full-information best choice

problem with disorder is defined as

v(π) = max
s

(πA + B),

where

s = s(π) = arg max
s

(πA + B)

and
A = E1(s)(1−λF2(s))−E2(s)(1−λF1(s))

(1−λF2(s))(1−λαF1(s))

B = E2(s)
1−λF2(s)

.
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Example – Normal distribution

Consider the examples of using the Bayes’ strategy B comparing with
two strategies with constant thresholds that not depend on π.
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Example – Normal distribution

Consider the examples of using the Bayes’ strategy B comparing with
two strategies with constant thresholds that not depend on π.
Let r.v. X1, ..., Xn have the normal distribution where functions F1(x)
and F2(x) have the variance σ2 = 1 and the expectation µ1 = 10 and
µ2 = 9 respectively for the S1 and S2 states.
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Example – Normal distribution

Consider the examples of using the Bayes’ strategy B comparing with
two strategies with constant thresholds that not depend on π.
Let r.v. X1, ..., Xn have the normal distribution where functions F1(x)
and F2(x) have the variance σ2 = 1 and the expectation µ1 = 10 and
µ2 = 9 respectively for the S1 and S2 states.
Strategies A1 and A2 with constant thresholds s:

s = E(s)
1−λF (s) ,

where F (s) ≡ F1(s) and E (s) ≡ E1(s) for the strategy A1;
F (s) ≡ F2(s) and E (s) ≡ E2(s) for the strategy A2.
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Example – Normal distribution

Figure: Graphics of the optimal thresholds for strategies A1, A2 and B for

α = 0.9, λ = 0.99
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Example – Normal distribution

The following figure shows the numerical results of the expected payoffs
of the observer who use the strategies A1, A2 and B (thresholds s1, s2
and sopt respectively).

Figure: Expected payoffs of the observer who use the strategies A1, A2 and B

α for λ = 0.99
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