V.M.Bure, S.Sh. Kumacheva

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

St. Petersburg, SPbSU

The choice of
the strategy of tax control
with the use of statistical information
about taxpayers

The International Conference «Stochastic Optimal Stopping» Petrozavodsk, Russia 12 – 16 September, 2010

A game-theoretical model

• A game-theoretical model

- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

Consider a game-theoretical model of tax control:

- ♦ Hierarchical game;
- \diamond Players: the tax authority and n taxpayers;
- ♦ Interaction between players corresponds to the scheme "principal-to-agent";
- ♦ The players: risk-neutral.

The players

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

- \diamond The k-th taxpayer $(k = \overline{1, n})$:
 - True income's level i_k ;
 - Declared income's level r_k (where $r_k \leq i_k$).
- \diamond The tax authority: p_k is the probability of the k-th taxpayer:

Let's suppose that

- taxpayers have some assumptions about the expected values of these probabilities;
- auditing is effective always.

Penalties

Four kinds of penalties are known from [4, 5] (A. Vasin):

- 1. the net penalty is proportional to evasion;
- 2. the penalty is proportional to difference between true and payed tax;
- 3. the penalty is restricted by the given level of the agent's minimal income in the case of his nonoptimal behaviour;
- 4. the post-audit payment is proportional to the revealed evaded income.

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

Case1: the net penalty is proportional to evasion

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

- t is the tax rate;
- π is the penalty rate;

Then the k-th taxpayer's postaudit payment is

$$(t+\pi)(i_k-r_k)$$

Taxpayers' payoffs

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

The k-th taxpayer's expected payoff is

$$b_k = i_k - u_k = i_k - tr_k - p_k(t + \pi)(i_k - r_k),$$

where u_k is the k-th taxpayer's expected tax payment.

The k-th taxpayer's strategy is $r_k = i_k$ or $r_k < i_k$.

Every taxpayer's aim:

$$\max_{r_k} b_k(p_k, r_k)$$
 or $\min_{r_k} u_k(p_k, r_k)$.

The tax authority's payoff

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

 \diamond c_k is the cost of the audit of the k-th taxpayer.

The tax authority's payoff function:

$$R = \sum_{k=1}^{n} R_k = \sum_{k=1}^{n} (u_k - p_k c_k) = \sum_{k=1}^{n} (tr_k + p_k (t + \pi)(i_k - r_k) - p_k c_k).$$

The tax authority's strategy is contract (t, π, p) , where t and π are the parameters of long-term tax control, and p is the vector $p = (p_1, \ldots, p_n)$ for each tax period.

The tax authority's aim: $\max_{p} R(p, r_1, r_2, ..., r_n)$, where $p = (p_1, p_2, ..., p_n)$.

Compare parametres t, π and c_k :

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

1. for each $k = \overline{1, n}$

$$(t+\pi)i_k \ge c_k; \tag{1}$$

2. for each $k = \overline{1, n}$

$$(t+\pi)i_k < c_k. (2)$$

3. (1) is satisfied for the part of taxpayers and (2) is satisfied for the another part.

The first case

(1) is satisfied for each $k = \overline{1, n}$.

Theorem 1 The optimal strategy of the tax authority (due to maximize its income) is $p^* = \frac{t}{t+\pi}$, the optimal strategy of the k-th taxpayer is

$$r_k^*(p_k) = \begin{cases} 0, & \text{if } p_k < p^*, \\ i_k, & \text{if } p_k \ge p^*. \end{cases}$$

 (r_k^*, p^*) is the Nash equilibrium.

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

The second case

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

(2) is satisfied for each $k = \overline{1, n}$.

Theorem 2 The optimal strategy of the tax authority (due to maximize its income) is $p^* = 0$, the optimal strategy of the k-th taxpayer is $r_k^*(p_k) = 0$. (r_k^*, p^*) is the Nash equilibrium.

The third case

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

(1) is satisfied for the part of taxpayers and (2) is satisfied for the another part.

Then renumber the set of n taxpayers so that:

- (1) is satisfied for the k-th taxpayer, where $k = \overline{1, n_0}$ (the Theorem 1 is fulfilled);
- (2) is satisfied for the k-th taxpayer, where $k = \overline{n_0 + 1, n}$ (the Theorem 2 is fulfilled).

Case2: the penalty is proportional to difference between true and payed tax

The expected tax payment of the k-th taxpayer:

$$u_k = tr_k + p_k(1+\pi)t(i_k - r_k).$$

The tax authority's payoff function:

$$R = \sum_{k=1}^{n} R_k = \sum_{k=1}^{n} (tr_k + p_k(1+\pi)t(i_k - r_k) - p_k c_k).$$

(1) becomes

$$(1+\pi)ti_k \ge c_k. \tag{3}$$

- 1. If (3) is satisfied, then theorem 1 is fulfilled for $p^* = \frac{1}{1+\pi}$;
- 2. If (3) is not satisfied, then theorem 2 is fulfilled.

• A game-theoretical model

- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

The choice of the strategy with the use of statistical information about taxpayers

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

- W_k is the random quantity, which characterize the k-th taxpayer's disposition to evade.
- Suppose: it is beta-distributed.
- A tax story: a characteristic of the taxpayer's behaviour in the previous periods.

Beta distribution

• A game-theoretical model

- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

The random quantity X is beta distributed with parametres α and β ($\alpha > 0$, $\beta > 0$), if X is distributed absolutely continously with the density

$$f(x|\alpha,\beta) = \begin{cases} \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, & \text{when } 0 < x < 1, \\ 0, & \text{in other cases,} \end{cases}$$

where
$$B(\alpha, \beta) = \int_{0}^{1} x^{\alpha-1} (1-x)^{\beta-1} dx$$
 is the beta-function.

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

- j is the number of current tax period. Let j = 1:
 - 1. there wasn't any audits of this taxpayer in previous periods;
 - 2. a priori information is absent;
 - 3. consider uniform equiprobability distribution of W_k (beta distribution with $\alpha = 1, \beta = 1$);
 - 4. the tax authority makes the audit with some fixed probability p_0 ;
 - 5. the tax story is a result of observation (audit), presented as a Bernoulli- distributed random quantity X_1 :

$$X_1 = \begin{cases} 1, & \text{if there isn't evasion} \\ 0, & \text{if there is an evasion.} \end{cases}$$

Consider the theorem about conjugate families [7].

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

Theorem. Let X_1, X_2, \ldots, X_n be a sample from the Bernoulli distribution with unknown value of parameter W. Suppose, that a priori distribution of W is the beta distribution with parametres α and β ($\alpha > 0$, $\beta > 0$). Then a posteriori distribution W при $X_i = x_i$ ($i = \overline{1, n}$) is the beta distribution with parametres $\alpha + y$ and $\beta + n - y$, where $y = \sum_{i=1}^{n} x_i$.

I.e. the family of beta distributions is conjugate to the family of Bernoulli distribution.

Using the feature of conjugate families

In the period j = 1: a posteriori W_k is beta-distributed with parametres

- $\alpha_{1_k} = 1$, $\beta_{1_k} = 2$, if there was an evasion;
- $\alpha_{1_k} = 2$, $\beta_{1_k} = 1$, if there was no evasion.

For the next tax periods (j > 1):

- Only X_{j-1} is considered as a tax story;
- A posteriori distribution of W_k , obtained in j-1 period, is considered as a priori distribution for the j period.

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

Choice of the audit probabilities

The tax authority can use obtained distribution of W_k to choose the value of p_k for k = 1, n as:

- mode;
- median;
- another quantile.

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

Numerical experiment

Consider j = 1:

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

• W_k is uniform-distributed: $\alpha_{0_k} = 1$, $\beta_{0_k} = 1$;

• quartile: 0, 25;

• median: 0, 5;

• mode: doesn't exist.

The first audit's result

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

Picture 1.

The curves from up to bottom: beta distribution with $\alpha = 1, \beta = 2; \alpha = 2, \beta = 1.$

$$j = 2$$
:

• A game-theoretical model

- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

For those, who avoided in the first tax period:

- a priori distribution: $\alpha_{1_k} = 1$, $\beta_{1_k} = 2$;
- quartile: 0, 435;
- median: 0, 750.
- a posteriori distribution:
 - \circ for those, who avoided again: $\alpha_{2_k} = 1$, $\beta_{2_k} = 3$;
 - for those, who didn't avoid in the second period: $\alpha_{2_k} = 2, \ \beta_{2_k} = 2.$

$$j = 2$$
:

• A game-theoretical model

- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

For those, who didn't avoid in the first tax period:

- a priori distribution: $\alpha_{1_k} = 2$, $\beta_{1_k} = 1$;
- quartile: 0,065;
- median: 0, 250;
- a posteriori distribution:
 - for those, who didn't avoid again: $\alpha_{2_k} = 3$, $\beta_{2_k} = 1$;
 - for those, who avoided in the second period: $\alpha_{2_k} = 2, \, \beta_{2_k} = 2;$

The second audit's result:

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

Picture 2.

The curves from up to bottom: beta distributions with $\alpha = 1$, $\beta = 3$; $\alpha = 2$, $\beta = 2$; $\alpha = 3$, $\beta = 1$.

$$j = 3$$
:

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

For twice-avoided:

- a priori distribution: $\alpha_{2_k} = 1$, $\beta_{2_k} = 3$;
- quartile: 0, 5725;
- median: 0,8750;
- a posteriori distribution:
 - \circ for those, who avoided again: $\alpha_{3_k} = 1$, $\beta_{3_k} = 4$;
 - for those, who didn't avoid in the third period: $\alpha_{3_k} = 2, \beta_{3_k} = 3;$

$$j = 3$$
:

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

For those, who changed the decision whether to evade or not:

- a priori distribution: $\alpha_{2_k} = 2$, $\beta_{2_k} = 2$;
- quartile: 0, 16;
- \bullet median: 0, 50;
- a posteriori distribution:
 - \circ for those, who avoided again: $\alpha_{3_k} = 2$, $\beta_{3_k} = 3$;
 - for those, who didn't avoid in the third period: $\alpha_{3_k} = 3, \, \beta_{3_k} = 2;$

$$j = 3$$
:

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

For those, who didn't avoid during two periods:

- a priori distribution: $\alpha_{2_k} = 3$, $\beta_{2_k} = 1$;
- quartile: 0,0175;
- median: 0, 1250;
- a posteriori distribution:
 - \circ for those, who avoided: $\alpha_{3_k} = 3$, $\beta_{3_k} = 2$;
 - \circ for those, who didn't avoid again: $\alpha_{3_k} = 4$, $\beta_{3_k} = 1$;

The third audit's result:

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

Picture 3.

The curves from up to bottom: beta distributions with $\alpha = 1$, $\beta = 4$; $\alpha = 2$, $\beta = 3$; $\alpha = 3$, $\beta = 2$; $\alpha = 4$, $\beta = 1$.

For the next period (j = 4):

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

- 1. For those, who avoid three times during three periods:
 - a priori distribution: $\alpha_{3_k} = 1$, $\beta_{3_k} = 4$;
 - quartile: 0,67515; median: 0,93750;
- 2. For those, who avoid twice of three periods:
 - a priori distribution: $\alpha_{3_k} = 2$, $\beta_{3_k} = 3$;
 - quartile: 0, 26455; median: 0, 68750;
- 3. For those, who avoid once of three periods:
 - a priori distribution: $\alpha_{3_k} = 3$, $\beta_{3_k} = 2$;
 - quartile: 0,05545; median: 0,31250;
- 4. For those, who didn't avoid during three periods:
 - a priori distribution: $\alpha_{3_k} = 4$, $\beta_{3_k} = 1$;
 - quartile: 0,00485; median: 0,06250;

Parametres for optimality of obtained probabilities

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

 t, π -? p_k is optimal (Theorem 1)

Consider two tax rates:

- t = 0, 2: profit tax in Russian Federation;
- t = 0, 13: income tax in Russian Federation.

The net penalty is proportional to evasion

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

experimental p_k (quantile of beta distribution)	π : p_k is optimal	
	for $t = 0, 13$	for $t = 0, 2$
0,01750	7,29857	11,22857
$0,\!05545$	2,21445	3,40685
$0,\!06500$	1,87000	2,87692
$0,\!12500$	0,91000	1,40000
0,16000	0,68250	1,05000
$0,\!25000$	0,39000	0,60000
$0,\!26455$	0,36140	$0,\!55600$
0,31250	0,28600	0,44000
$0,\!43500$	0,16885	$0,\!25977$
0,50000	0,13000	0,20000
$0,\!57250$	0,09707	0,14934
0,68750	0,05909	0,09091
0,75000	0,04333	0,06667
0,87500	0,01857	0,02857
0,93750	0,00867	0,01333

The penalty is proportional to difference between true and payed tax

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

experimental p_k	π : p_k is optimal	
(quantile of beta distribution)		
0,01750	56,14286	
$0,\!05545$	17,03427	
0,06500	14,38462	
$0,\!12500$	7,00000	
0,16000	5,25000	
$0,\!25000$	3,00000	
$0,\!26455$	2,78000	
0,31250	2,20000	
0,43500	1,29885	
0,50000	1,00000	
0,57250	0,74672	
0,68750	0,45455	
0,75000	0,33333	
0,87500	0,14286	
0,93750	0,06667	

References

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

- 1. Petrosyan L., Zenkevich N., Semina E. The game theory. M., 1998.
- 2. Kumacheva S., Petrosyan L. A game theoretical model of interaction between taxpayers and tax authority // Processes Of Conrtol And Stability. St. Petersburg, 2009.
- 3. Boure V., Kumacheva S. A model of audit with using of statistical information about taxpayers' income // Vestnik SPbGU. Series 10. 2005. Vol. 1-2.
- 4. Vasin A., Vasina, P. The optimization of tax system in condition of tax evasion: the role of penalty restriction // EERC. Series "Nauchnye doklady". 2002.
- 5. Vasin A., Morozov V. The Game Theory and Models of Mathematical Economics. M., 2005.
- 6. Chander P., Wilde L.L.. A General Characterization of Optimal Income Tax Enfocement // Rev. of Economic Studies. 1998. Vol. 65. P. 165-183.
- 7. De Groot M.H. Optimal Statistical Decisions. M., 1974.

- A game-theoretical model
- The players
- Penalties
- Case1: the net penalty is proportional to evasion
- Case2: the penalty is proportional to difference between true and payed tax
- The choice of the strategy with the use of statistical information about taxpayers
- Beta distribution
- Numerical experiment
- References

THANK YOU!