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Statement of the problem
Introduction
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Suppose that the objective function f: R? — R takes its minimal value at a
single point ..

0 X X

Consider the problem of finding the global minimum of an objective function f.
One possible approach to this problem is to apply random search optimization
methods.

This paper is devoted to the theoretical study of the convergence rate of the
Markov symmetric random search. We measure the convergence rate of such
algorithms by the number of evaluations of the objective function required to
attain the desired accuracy e of the solution. It is shown that for the Markov

symmetric random search it is not possible to obtain a rate better than |In¢|
as e — 0.
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Statement of the problem
Optimization space

We consider the case of the Euclidean space R? and the Euclidean metric p:
4 1/2
plz,y) = (Z(fﬂn - yn)2> ,
n=1

where z = (z1,...,zq) and y = (y1, ..., Yad)-
The closed ball of radius r centered at = will be denoted by

Br(z) ={y € Rd, such that p(z,y) < r}.
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Statement of the problem
Objective function

We assume that the objective function f: R? — R is measurable, bounded
from below and takes its minimal value at a single point z, = argmin{ f(z),
such that z € R?}.
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Statement of the problem
Markov random search
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Following the book by Zhigljavsky A. and Zilinskas A.

> Zhigljavsky A., Zilinskas A. Stochastic Global Optimization. Berlin:
Springer-Verlag. 2008.
we give a general scheme of Markov algorithms for global random search.
The following algorithm simulates the Markov random search {&,},>0 in R?
with the initial point & = z € R%.
Algorithm 1 (A general scheme of Markov algorithms)
Step 1. Set & = x and the iteration number n = 1.
Step 2. Obtain a point 7, in R? by sampling from the distribution P, (£,_1,-).
Here P,(£n—1,-) is the transition probability; this probability may depend on n
and &,_1.
Step 3. Set
D with probability @,
&n = &n—1  with probability 1 — Q..

Here @, is the acceptance probability; this probability may depend on 7,
En1, f(n) and (o).

Step 4. Check a stopping criterion. If the algorithm does not stop, substitute
n + 1 for n and return to Step 2.
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Statement of the problem
Simulated annealing
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Particular choices of transition probabilities P, (z,-) and acceptance
probabilities @, lead to specific Markov global random search algorithms. The
most well-known among them is the celebrated ‘simulated annealing’ algorithm.
A general simulated annealing algorithm is algorithm 1 with acceptance

probabilities

1 if A, <0,

Qn = . (1)

exp(—fBrAn) if Ap >0,
where Ay, = f(nn) — f(€n—1) and B, >0 (n=1,2,...).
The choice (1) for the acceptance probability @, means that any ‘promising’
new point 7, (for which f(n,) < f(£n.—1)) is accepted unconditionally; a
‘non-promising’ point (for which f(n,) > f(§n—1)) is accepted with probability

n — exp(_ﬁnAn)-
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Statement of the problem

Markov symmetric random search

In accordance with the structure of algorithm 1, we call the distributions
P, (&n—1,-) trial transition probabilities. We shall consider the case where the
trial transition probabilities P, (x,dy) have symmetric densities p,(x,y) of the
form

pu(z,y) = gn(p(2,y)), (2)
where p is the Euclidean metric and g,, are non-increasing functions of a
positive argument.

P,(x.y)

x y

Markov search with transition densities of the form (2) will be called Markov
symmetric random search.
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Statement of the problem
Characteristics of random search
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We use a random search to find the minimizer x. with the prescribed accuracy
e (approximation with respect to the argument). In this case, we want the
search to hit the ball B.(z.). Denote by

7e = min{n > 0, such that &, € B.(z.)}

the instant when the search first hits the set B.(z.).

Usually, we assume that there is no need to evaluate the function f for the
simulation of the distributions P,,. Therefore, in the process of performing 7.
iterations of the algorithm, the function f is evaluated 7. + 1 times.

We use two characteristics of the convergence rate of the random search. The
computational effort of the random search is defined as E 7. It is interpreted as
the average number of steps needed to hit the set B.(z.).

The other characteristic of 7. considered in this paper is the guaranteeing
number of steps. It is defined as the minimal number of steps N(z, f,e,7) at
which the hit of B:(z.) is ensured with the probability not less than ~; in other
words, N(z, f,&,7) = min{n > 0, such that P(7. <n) > ~}.
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The rate of convergence
The rate of convergence

It is shown that for the Markov symmetric random search it is not possible to
obtain a rate better than |Ine| as € — 0.

Theorem 1

Assume that f: R? — R takes its minimal value at a single point z.. Consider
any Markov symmetric random search in R? with the initial point z € R?%. Let
0<e<p(z,zs) and 0 <y < 1. Then we have

E7e > caln(p(z,z.)/e), N(w,f,e,7) > vycaln(p(z,z.)/c),

where cq = 2"~ % sup{(1 — ¢)*/|Ing], such that ¢ € (0,1)}.

This result gives us an opportunity to estimate potential capabilities of the
Markov symmetric random search methods.
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The rate of convergence
Fast optimization methods
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Assume that the objective function f is ‘non-degenerate’ (see

[Zhigljavsky, Zilinskas]).

Examples of homogeneous Markov algorithms with the computational effort
and the guaranteeing number of steps behaving as O(In® £) were given here:

> Zhigljavsky A., Zilinskas A. Stochastic Global Optimization. Berlin:
Springer-Verlag. 2008.

@ A.S. Tikhomirov, “On the Markov Homogeneous Optimization Method,"”
Computational Mathematics and Mathematical Physics. 46, 361-375
(2006).

@ A. Tikhomirov, T. Stojunina, and V. Nekrutkin, “Monotonous Random
Search on a Torus: Integral Upper Bounds for the Complexity,” Journal of
Statistical Planning and Inference. 137, 4031-4047 (2007).

@ A.S. Tikhomirov, “On Fast Variants of the Simulated Annealing
Algorithm,” Stochastic Optimisation in Computer Science. 5, pp. 65-90
(2009) [in Russian].

@ A.S. Tikhomirov, “On the Convergence Rate of the Simulated Annealing
Algorithm,” Computational Mathematics and Mathematical Physics. 50,
19-31 (2010).
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The rate of convergence
Fast optimization methods

Nonhomogeneous Markov algorithms with the computational effort and the
guaranteeing number of steps behaving as O(|In¢| In|Ine|) were given here:

ﬁ V.V. Nekrutkin and A.S. Tikhomirov, “Speed of Convergence as a
Function of Given Accuracy for Random Search Methods,” Acta
Applicandae Mathematicae. 33, 89-108 (1993).

ﬁ A.S. Tikhomirov and V.V. Nekrutkin, “Markov Monotone Search for
Extrema: Survey of Some Theoretic Results,” in Mathematical Modeling:
Theory and Applications, No. 4 (VVM, St. Petersburg, 2004), pp. 3-47 [in
Russian].

@ A.S. Tikhomirov, “On the Convergence Rate of the Simulated Annealing
Algorithm,” Computational Mathematics and Mathematical Physics. 50,
19-31 (2010).

The inequalities of theorem 1 show that these algorithms are fast optimization

methods (from an asymptotic viewpoint). Their asymptotic rate of

convergence is just marginally worse than the lower bounds in theorem 1.

11/11 A.S. Tikhomirov On the Convergence Rate of the Markov Symmetric Random Search



	Statement of the problem
	The rate of convergence

