Активность антиоксидантных ферментов в эритроцитах крови мерланга (M ± m)

Фермент	Незараженные n=7	Зараженные n=14
KAT, мг H_2O_2 /мг Hb в мин	0.23 ± 0.01	0.37 ± 0.06 *
СОД, усл. ед./мг Нb в мин	$159,34 \pm 28,4$	$264,29 \pm 33,45*$
ПЕР, опт. ед./мг Hb в мин	$3,06 \pm 0,31$	$3,46 \pm 0,32$
ГР, нмоль НАДФН/мг Hb в мин	$6,78 \pm 2,2$	$12,39 \pm 2,6$
ГТ, нмоль конъюг./мг Hb в мин	$6,68 \pm 2,14$	$31,36 \pm 4,47*$

Примечание: * — различия достоверны по сравнению со значениями незараженных рыб (р < 0,05–0,01); n — количество особей.

Таким образом, результаты исследований позволили обнаружить определенное влияние паразитарной инвазии на состояние ферментной антиоксидантной системы крови мерланга. Совершенно очевидно, что внедрение паразита в стенки органов пищеварения, выделение метаболитов в организм хозяина, а также привносимая им инфекция усиливают процессы свободнорадикального окисления и являются мощными факторами, стимулирующими активность антиоксидантных ферментов.

Ранее нами также были отмечены изменения активности антиоксидантных ферментов тканей черноморского шпрота *Sprattus sprattus phalericus*, инвазированного личинками нематоды *Hysterothylacium aduncum*. Показано, что активность каталазы достоверно снижена у зараженных рыб по сравнению с незараженными. Минимальные значения установлены у особей, содержащих наибольшее количество паразитов. С увеличением степени инвазии активность пероксидазы снижалась в тканях рыб по сравнению с неинвазированными особями.

Таким образом, результаты исследований показали, что у мерланга под влиянием паразитарной инвазии нематоды *Hysterothylacium aduncum* активность каталазы, СОД и ГТ эритроцитов крови повышается. В связи с этим можно заключить, что антиоксидантные ферменты весьма чувствительны к паразитарной инвазии и могут служить не только биомаркерами для оценки действия на рыб неблагоприятных физических и химических факторов, но и биотических.

Учитывая высокую степень биологического загрязнения Черного моря, исследованные параметры позволяют оценить состояние рыб и могут быть использованы в качестве индикаторов влияния на них паразитарной инвазии.

THE INFLUENCE OF THE NEMATODE HYSTEROTHYLACIUM ADUNCUM INFECTIOUSNESS ON THE ANTIOXIDANT ENZYME ACTIVITIES OF WHITING MERLANGIUS MERLANGUS EUXINUS

A.V. Zavyalov, E.N. Skuratovskaya

Istitute of biology of the southern seas, NANU, Sevastopol, Ukraine skuratovskaya2007@rambler.ru

The influence of the nematode *Hysterothylacium aduncum* on the antioxidant enzyme system in blood of Black Sea whiting inhabiting coastal areas of Sevastopol was studied. The increase of catalase, superoxide dismutase and glutathione-S-transferase activities in blood of invased fishes was detected. The possibility of antioxidant enzyme activities application as biomarkers of the parasite invasion effect in fish is discussed.

АНАЛИЗ МИКРОЭЛЕМЕНТНОГО СОСТАВА ОРГАНОВ И ТКАНЕЙ КАСПИЙСКОГО ТЮЛЕНЯ

В.Ф. Зайцев, Э.И. Мелякина, Л.Ю. Ноздрина

ФГОУ ВПО Астраханский Государственный Технический Университет, Астрахань, Россия post@astu.org

В фауне Каспийского моря имеется единственное морское млекопитающее, принадлежащее к отряду ластоногих – каспийский тюлень (Phoca caspica).

Животные встречаются по всему Каспию, как в очень мелководных районах, так и в зоне больших глубин. Каспийский тюлень принадлежит к пагофильной группе тюленей и биологически связан со льдами, на которых размножается и выкармливает детенышей, проводит большую часть периода линьки.

В современный период каспийский тюлень сталкивается с многочисленными угрозами. Чрезмерная эксплуатация популяции тюленя промыслом в прошедшем столетии привела к существенному сокращению численности популяции, сокращение и исчезновение мест обитания из-за усиливающейся антропогенной нагрузки и аномально теплых зим подрывает возможность достижения популяцией тюленя стабильного уровня развития. Виды-вселенцы, болезни, загрязнение и другие факторы не способствуют устойчивому состоянию популяции вида.

Исследования содержания микроэлементов в органах и тканях каспийского тюленя вызывают серьезную обеспокоенность.

В результате проведенных исследований выяснено, что элементы распределяются в организме тюленя неравномерно в зависимости от свойств металлов и функциональных особенностей органов. Значительные концентрации металлов отмечены прежде всего в органах, для которых характерно активное протекание процессов метаболизма с одной стороны, а с другой — они активно участвуют в процессах, направленных на поддержание гомеостаза, таких как печень, почки, селезенка.

В наиболее высоких концентрациях из исследованных элементов в теле тюленя присутствует железо. Больше всего этого элемента имеется в органах, обильно снабжаемых кровью. На первом месте по накоплению железа стоит сердце 1007 мг/кг. Далее, по мере уменьшения содержания железа, следуют почки — 618,7 мг/кг, селезенка — 608,4 мг/кг, печень — 493,9 мг/кг, легкие — 434,3 мг/кг, желудок — 413,8 мг/кг, скелетные мышцы — 330,1 мг/кг и подкожный жир — 10,1 мг/кг. У теплокровных животных, печень выполняет роль депо железа; значительное содержание железа в селезенке обусловлено ее участием в гемопоэзе, кроме того, в селезенке происходит утилизация отмирающих и дегенерирующих эритроцитов.

Содержание цинка в организме тюленя уступает лишь железу, а иногда и превосходя его по уровню накопления в отдельных органах и тканях. Цинк в больших концентрациях отмечался в желудке $-96.9~\rm Mr/kr$, печени $-96~\rm Mr/kr$, почках $-79.6~\rm Mr/kr$, скелетных мышцах $-72.8~\rm Mr/kr$, селезенке $-67.1~\rm Mr/kr$. В меньших концентрациях цинк был обнаружен в сердце $-30.2~\rm Mr/kr$, легких $-14.6~\rm Mr/kr$ и подкожном жире $-0.9~\rm Mr/kr$.

Медь активно депонируется печенью, имеет большое значение в фенольном, азотистом, нуклеиновом обменах. Как известно, ключевую роль в обмене меди играют печень и ее основные структурные элементы – гепатоциты. Этим объясняется и большое количество меди (32,9 мг/кг), приходящееся на единицу массы печени. Содержание меди в остальных органах и тканях было следующим: почки – 13,4 мг/кг, желудок – 9,2 мг/кг, сердце – 8,1 мг/кг, скелетные мышцы – 5,8 мг/кг, селезенка – 4,8 мг/кг, легкие – 2,4 мг/кг и подкожный жир – 0,2 мг/кг.

Снижение количества меди в печени и в селезенке обычно сопровождается морфологическими изменениями показателей красной крови в виде симптомов анемии. Учитывая, что мышцы составляют большой процент от массы тела, их, как и печень, можно отнести к депонирующим медь органам.

Марганец накапливается преимущественно в печени (11,5 мг/кг). Приблизительно на одном уровне отмечено его содержание в таких органах, как почки -4,2 мг/кг и желудок -2,8 мг/кг. В остальных органах были замечены лишь следовые концентрации марганца.

Концентрация кобальта в органах и тканях невелика. Следовые количества были обнаружены в подкожном жире -0.4 мг/кг. Наибольшее количество в почках -2.6 мг/кг и сердце -2.6 мг/кг каспийского тюленя. В остальных органах содержание кобальта находится приблизительно на одном уровне и не превышает в среднем 2 мг/кг.

Накопление свинца в различных органах и тканях неодинаково. В наибольших количествах свинец обнаруживается в почках -3.2 мг/кг. Далее по мере уменьшения содержания следуют селезенка -1.8 мг/кг, желудок -1.6 мг/кг, скелетные мышцы -1.4 мг/кг и печень -1.4 мг/кг, а в подкожном жире -0.2 мг/кг обнаруживается только в следовых количествах.

ANALYSIS OF MICROELEMENT COMPOSITION OF ORGANS AND TISSUES CASPIAN SEAL

V. F. Zaitsev, E.I. Melyakina, L.Y. Nozdrina

Astrakhan State Technical University, Astrakhan, Russia post@astu.org

Caspian seal – this is the only marine mammal in the Caspian Sea, a unique endemic species, which is listed in the Red Book of World Conservation Union as a species under threat. Seal is the top of the food pyramid on the Caspian, and the status of this population may be an indicator of well-being of the entire ecosystem of a large region.

УЧАСТИЕ АНТИОКСИДАНТНОЙ СИСТЕМЫ В АДАПТАЦИЯХ МЛЕКОПИТАЮЩИХ РАЗЛИЧНОМУ УРОВНЮ КИСЛОРОДА: НЫРЯНИЕ. СПЯЧКА И ВЫСОКОГОРНОЕ ПРОИСХОЖЛЕНИЕ

В.А. Илюха^{1,2}, С.Н. Калинина¹, Т.Н. Ильина¹, И.В. Баишникова¹, В.В. Белкин¹, А.Е Якимова¹, Е.А. Хижкин¹, Б. Барабаш³

¹ Учреждение Российской академии наук Институт биологии Карельского научного центра РАН, Петрозаводск, Россия

² Петрозаводский государственный университет, Петрозаводск, Россия ³ Краковская сельскохозяйственная академия, Краков, Польша

Антиоксидантная система (АОС) представляет собой одну из защитных систем организма (Зенков, Ланкин, Меньщикова, 2001, Меньщикова и др., 2006). Основной функцией АОС является поддержание на стационарном (физиологически необходимом) уровне концентрации активных форм кислорода (АФК). Этот процесс осуществляется за счет ферментативного (супероксиддисмутаза (СОД), каталаза и др.) и неферментативного звеньев (низкомолекулярные антиоксиданты), обеспечивающих детоксикацию свободных радикалов в клетке. Следует отметить, что АФК могут выступать в качестве сигнальных молекул, а в ряде случаев чрезмерное снижение их уровня может быть вредным для организма (Меньщикова и др., 2008). В литературе имеется лишь небольшое количество работ, посвященных вопросу участия АОС в адаптациях млекопитающих к проживанию в условиях с различным уровнем кислорода. Введенные в зоокультуру и обитающие в природе млекопитающие являются удобными модельными объектами позволяющими исследовать широкий спектр алаптаций.

Активность ключевых антиоксидантных ферментов (СОД и каталазы) и уровень витамина Е исследованы в печени, почках, сердце, легких, селезенке и скелетной мышце у болеле чем 20 видов млекопитающих из различных отрядов – Artiodactyla, Carnivora, Insectivora, Lagomorpha и Rodentia. Определение активности ферментов проводили спектрофотометрически: СОД – по модифицированной адренохромной методике (Misra, Fridovich, 1972), каталазы – по количеству разложенной перекиси водорода (Bears, Sizes, 1952). Содержание белка измеряли по Лоури (Lowry et al., 1951), используя в качестве стандарта бычий сывороточный альбумин. Концентрацию витамина Е (α-то-коферола) определяли методом ВЭЖХ (Скурихин, Двинская, 1989).

У всех изученных видов отмечены, как правило, общие закономерности органного распределения активности антиоксидантных ферментов, характерные и для лабораторных млекопитающих — максимальная активность ферментов наблюдалась в печени, а в других органах она была ниже. У большинства видов наиболее высокая концентрация токоферола также отмечалась в печени и почках. В то же время, были обнаружены некоторые видовые особенности: состояние АОС существенно различалось даже у таксономически близких видов и обуславливалось прежде всего их экологическими особенностями. Среди изученных видов млекопитающих шиншилла, нутрия, лесная мышовка, речные бобры, бурый медведь, кутора и енотовидная собака имели значительно более высокую активность одного или обоих ферментов, хотя степень выраженности изменений активности ферментов и уровня витамина Е у них была различной.