лями только одного бореального равнинного фаунистического комплекса. Из паразитов со сложным циклом остаются *Bunodera luciopercae*, *Diplostomum spathaceum*, *Acanthocephalus lucii*, *Triaenophorus nodulosus*, *Camallanus lacustris*, промежуточными хозяевами которых служат брюхоногие моллюски, водяные ослики и циклопы.

Специфические условия ацидотрофных (ацидных) озер приводят к тому, что в паразитофауне рыб остается около 5 видов. Выпадают даже такие банальные представители как трематоды рода *Diplostomum*.

Более подробные сведения о влиянии типологнии озер на паразитов рыб приводятся нами в ряде статей и монографии (Румянцев, 1996).

Литература

Герд С. В., 1949. Биоценозы бентоса больших озер Карелии // Тр. Карел.-Финск. Гос. ун-та. Петрозаводск. Ч. 4. С. 1–198.

Герд С. В., 1965. Биотопы и биономия озер Карелии // Фауна озер Карелии. М.–Л. С. 42–47.

Румянцев Е. А., 1996. Эволюция фауны паразитов рыб в озерах. Петрозаводск. 188 с.

Румянцев Е. А., 2007. Паразиты рыб в озерах Европейского Севера. Петрозаводск. 250 с.

ПАРАЗИТОФАУНА РЯПУШКИ ОЗЕР ОЛИГОТРОФНОГО ТИПА

Е.А. Румянцев, О.В. Мамонтова, С.А. Шалина

Петрозаводский государственный университет, г. Петрозаводск, Россия e-mail: rumyantsevea@mail.ru, lulia@onego.ru

Ряпушка – Coregonus albula (L.) – одна из широко распространенных пресноводных рыб Европейского Севера. Она достаточно подробно исследована в озерах различного типа, включая крупнейшие олиготрофные водоемы – Ладожское и Онежское (Пермяков, Румянцев, 1984; Румянцев и др., 1984; Румянцев, Пермяков, 1994; Румянцев, 2007). Именно в этих озерах у нее наблюдается наибольшее разнообразие паразитов. В паразитофауне ее выделяются специфичные виды, образующие арктический пресноводный комплекс. Здесь условия существования для северных форм – как хозяев (сиговые и лососевые рыбы), так и их специфичных паразитов являются оптимальными. Онежское и Ладожское озера находятся близко к границе Циркумполярной подобласти. Эти озера относятся к числу самых крупных водоемов олиготрофного типа с разнообразной гидрофауной, в которых обеспечивается также заражение многими широкоспецифичными видами паразитов, которых нет в бассейне Белого моря.

Картина зараженности ряпушки олиготрофных озер характеризует ее как планктофага. У нее широко представлены в видовом и количественном отношении (экстенсивность и интенсивность) те группы паразитов (цестоды *Proteocephalus longicollis, Triaenophorus crassus, Diphyllobothrium ditremum*), заражение которыми происходит при поедании их промежуточных хозяев – веслоногих ракообразных. При общей слабой зараженности миксоспоридиями встречаются лишь те виды (*Henneguya zschokkei*), споры которых имеют приспособления к парению в воде.

В озерах Сямозерской группы, например, в Сямозере (Шульман, 1962), равноценных по географическому положению с Онежским и Ладожским, но отличающихся по своей типологии (эвтрофированный тип), паразитофауна ряпушки беднее. Из ее состава выпадают, в частности, специфичные виды арктического пресноводного комплекса *Cystidicola farionis* и *Echinorhynchus salmonis* в связи с отсутствием в этих озерах их промежуточных хозяев – реликтовых ракообразных, а также рачки рода *Salmincola*. В целом условия существования здесь для представителей арктического пресноводного комплекса – лососевых и сиговых рыб и их специфичных паразитов – не являются оптимальными.

Ряпушка Ладожского озера имеет 26 видов паразитов, Онежского – 28 (табл.). Наиболее широкое распространение у нее получают инфузория *Tripartiella copiosa*, моногенея *Discocotyle sagittata*, цестода *Proteocephalus longicollis*, трематоды рода *Diplostomum* и *Ichthyocotylurus erraticus*. В разных районах этих крупных водоемов она характеризуется определенными различиями паразитофауны.

Паразитофауна ряпушки

Паразит	Ладожское озеро	Онежское озеро (Пермяков, Румянцев, 1984)
Myxidium salvelini	7(+)	-
Leptotheca schulmani	-	7(+)
Chloromyxum coregoni	27(+)	13(+)
Myxobolus evdokimovae	13(+)	-
Henneguya zschokkei	7(+)	7(+)
Hemiophrys branchiarum	-	33(+)
Capriniana piscium	7(0,1)	80(0,5)
Apiosoma carpelli	-	27(0,1)
A. piscicolum	7(0,1)	7(0,05)
Trichodina nigra	7(0,2)	40(0,3)
T. pediculus	-	26(0,2)
Tripartiella copiosa	40(0,3) 0,1–1,0	53(1,0)
Discocotyle sagittata	40(2,9) 2-24	7(0,1)
Triaenophorus crassus	27(0,3)	27(0,5)1-3
Eubothrium salvelini	7(0,1)	13(0,3)1-3
Diphyllobothrium ditremum	13(0,1)	7(0,1)
Proteocephalus longicollis	80(2,4) 1-8	67(4,0)1–15
Rhipidocotyle campanula	-	13(0,1)
Phyllodistomum nostomum	13(0,7) 3–8	53(1,6)1-8
Diplostomum gasterostei	80(4,0) 1-30	+
D. spathaceum	40(0,5) 1–2	100(14,0)1-53
D. helveticum	7(0,1)	+
Tylodelphys clavata	13(0,1)	+
T. podicipina	7(0,1)	_
Ichthyocotylurus erraticus	60(1,1) 1-4	13(0,3)
Cystidicola farionis	20(0,3) 1-4	+
Camallanus lacustris	7(0,1)1	
Raphidascaris acus	13(1,7) 1–24	13(0,1)
Echinorhynchus salmonis	13(0,1)1-1	7(0,1)
Ergasilus sieboldi	20(0,3) 1-3	20(0,2)
Caligus lacustris	47(1,3) 1–6	7(0,1)
Argulus coregoni	_	13(0,1)
Всего видов	26	28

В Ладожском озере в районе Сортавалы наблюдается более высокая зараженность ряпушки инфузориями родов *Apiosoma* и *Trichodina* и трематодами *Diplostomum*. Зато в районе Усть-Обжанки чаще встречаются паразитические ракообразные *Ergasilus sieboldi* и *Caligus lacustris*. В Онежском озере также проявляются локальные различия в зараженности ряпушки паразитами. В районе Пяльмы она сильнее заражена миксоспоридиями и цестодой *Proteocephalus longicollis*. В районе Шалы характерна более высокая зараженность инфузориями и трематодами *Diplostomum*.

Если сравнивать паразитофауну ладожской ряпушки с таковой Онежского озера, то можно отметить наиболее широкое распространение в последнем инфузории *Capriniana piscium*, цестоды *Proteocephalus longicollis* и трематод *Diplostomum* и *Phyllodistomum conostomum*. В то же время моногенея *Discocotyle sagittata* не менее редкий вид в Ладожском озере. Паразитофауна ряпушки в обоих крупнейших озерах имеет исключительно большое сходство. Для онежской ряпушки, по сравнению с таковой Пяозера (Румянцев, Пермяков, 1994), характерна более высокая зараженность паразитами, связанными с зоопланктоном (*P. longicollis, Triaenophorus crassus, Diphyllobothrium ditremum*). В то же время у пяозерской ряпушки чаще встречались те виды, промежуточными хозяевами которых являются реликтовые ракообразные.

Литература

Пермяков Е. В., Румянцев Е.А., 1984. Паразитофауна лососевых (*Salmonidae*) и сиговых (*Coregonidae*) рыб Онежского озера // Сб. научн. Тр. ГосНИОРХ. Вып. 216. С. 112–116.

Румянцев Е. А., Пермяков Е. В. 1994. Паразиты рыб Пяозера // Экологическая паразитология. Петрозаводск. С. 53–78.

Румянцев Е. А., Пермяков Е. В., Алексеева Е. Л., 1984. Паразитофауна рыб Онежского озера и ее многолетние изменения // Сб. научн. Тр. ГосНИОРХ. Вып. 216. С. 117–133.

Румянцев Е. А., 2007. Паразиты рыб в озерах Европейского Севера. Петрозаводск. 2007. 250 с.

Шульман С. С., 1962. Паразитофауна рыб Сямозерской группы озер // Тр. Сямозерск. Комплексн. Экспед. Петрозаводск. Т. 2. С. 173–244.

ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ ДИНАМИКИ СООТНОШЕНИЯ ВЕЛИЧИН МАССЫ И РАЗМЕРОВ ТЕЛА ОКУНЯ

Л.П. Рыжков

Петрозаводский государственный университет, г. Петрозаводск, Россия e-mail: rlp@petrsu.ru

В настоящее время, когда аквакультура становится приоритетным направлением рыбохозяйственной отрасли, оценка продукционных возможностей рыб в различных условиях существования, наряду с чисто научной проблемой, приобретает практическое значение. Одним из путей такой оценки может быть получение количественных материалов о росте рыб, особенно о соотношении массы и длины тела. К сожалению, сведения о динамике такого соотношения у рыб весьма ограничены (Поляков, 1959; Смирнов с соавторами, 1972; Рыжков, 2007). Поэтому проблема динамики величин соотношения массы и длины тела у рыб остается не решенной, хотя значение ее при развитии рыбоводства переоценить практически не возможно. Известно, что не только разные виды рыб имеют различные продукционные возможности, но даже у одного вида эти возможности могут изменяться в зависимости от условий окружающей среды. В одних условиях у рыб более интенсивно может увеличиваться удлиненность тела, а в других, наоборот, его высота и ширина (масса). Знание же динамики соотношения этих показателей особенно важно при подборе объектов рыбоводства, времени и условий их выращивания, особенностей роста и определения продукционных возможностей. Однако разработке механизма такой оценки объектов рыбоводства и их продукционных возможностей в различных условиях существования до сих пор не уделяется должного внимания.

Л.П.Рыжковым (2007) было предложено оценку продукционных возможностей различных видов рыб определять по динамике показателей (индексов) соотношения между величиной массы тела и кубом его линейных размеров (ИС). Известно, что при отклонении от изометрии величина ИС будет изменяться. При интенсивном увеличении линейных размеров величина ИС будет уменьшаться, а если будет преобладать рост в высоту и ширину (накопление массы тела), то показатель ИС будет увеличиваться. Следовательно, зная динамику ИС у рыб можно судить об их продукционных возможностях и соответственно подбирать объекты рыбоводства и условия их выращивания.

В качестве объекта настоящего исследования был выбран окунь (Perca fluviatilis L), один из наиболее широко распространенных видов рыб. Всего было обследовано 2216 рыб, отловленных в различных водоемах Карелии. Для изучения динамики величин ИС между массой тела и ее линейными размерами (мг/см³) определялась масса тела рыб и измерялись их общая длина, максимальная высота и ширина. В исследовании окуней принимали участие сотрудники лаборатории, аспиранты и студенты. Огромная им благодарность за помощь.

Исследуя динамику ИС у окуней возрастной группы от 1 года до 15 лет из различных условий обитания было установлено, что на протяжении изучаемого периода онтогенеза величина ИС изменяется не равномерно. До полового созревания превалирует линейный рост рыб (ИС – 16,9), при дальнейшем развитии более интенсивно накапливается масса тела (ИС – 18,2). Средняя величина ИС для исследованной возрастной группы 17,4. Ранее было показано (Рыжков, 2007), что по величине ИС окунь существенно превышает судака (ИС – 14,3) и приближается к карповым (ИС леща – 19,7). Возможно, это обусловлено качественным составом пищи. Известно, что экологические формы окуня в возрасте 2–5 лет переходят на хищное питание, а другие на протяжении всей жизни питаются планктоном и бентосом (ред. Решетников, 2002; Ивантер, Рыжков, 2004). Однако нельзя исключить множество других факторов. Например, площадь и глубина водоемов, состояние кормовой базы и так далее. Поэтому представляло интерес исследовать динамику величин ИС у окуней из водоемов различной площади, глубины и с разными кормовыми возможностями (биомасса зоопланктона и бентоса).