ностям крупных стратиформных месторождений медистых песчаников, занимающих второе место в мире по общим запасам меди.

Золото и серебро в большинстве случаев связано с тонкими прожилками совместно с медистыми сульфидами в хавалышской и темерницкой свитах (до 2,4 г/т золота и 300 г/т серебра), кроме того до 1,5 г/т в зонах натриевого метасоматоза хавалышской свиты.

Кластогенное золото связано с конгломератами темерницкой свиты. Максимальные содержания – в нижних 80 м свиты (в среднем 0,2 г/т).

Синявская серия развита в субширотной зоне между реками Темерник и Миус и выделяется в самостоятельную одноименную металлогеническую провинцию.

Литература

1. Додин Д. А., Чернышов Н. М., Яцкевич Б. А. Платинометальные месторождения России. С.-Пб.: Наука, 2000. 754 с.

2. Зайцев А. В., Закруткин В. В., Кулиш Е. А. Рудоносность метаморфических комплексов восточного склона Украинского щита (Ростовского выступа) // Геологический журнал. 1989. № 5. С. 88-96.

3. Зайцев А. В., Грановский А. Г., Рышков М. М., Зеленщиков Г. В. Строение и геодинамика докембрийских структур в зоне сочленения Воронежского кристаллического массива и Ростовского тектонического выступа // Доклады Академии наук. 2003. Т.392. № 1. С. 81-84.

4. Закруткин В. В., Кулиш Е. А., Зайцев А. В., Кривонос В. П., Полуновский Р. М. Метаморфические комплексы восточной окраины Украинского щита. Киев: Наукова думка, 1990. 251 с.

5. Закруткин В. В., Парада С. Г. О промышленно-генетическом типе рудопроявлений меди в синявской серии Ростовского выступа Украинского щита // Проблемы геологии, полезных ископаемых и экологии юга России и Кавказа. Новочеркасск. 1999. С. 149-151.

6. Симон А. К., Зеленщиков Г. В., Лебедько Г. И., Лихачев В. А., Зеленщикова К. Х., Ефанова В. А. Основные черты строения и формационное расчленение докембрийского фундамента юго-востока Русской плиты // Геология, петрология и металлогения кристаллических образований Восточно-Европейской платформы. Т. 1. М.: Недра, 1976. С. 91-106.

Геолого-геофизические критерии выделения палеопротерозойских базит-гипербазитовых интрузий и связанное с ними оруденение (на примере проявления Травяная Губа в Северной Карелии)

Земцов В.А., Кулешевич Л.В.

Учреждение Российской академии наук Институт геологии Карельского научного центра РАН, г. Петрозаводск, e-mail: zemtzov@krc.karelia.ru; kulushev@krc.karelia.ru

Палеопротерозойские отложения (от 2,6÷2,55 до 2,1-1,9 млрд. лет) Карельского кратона залегают на архейском основании и образуют синклинорные структуры, имеющие рифтогенную троговую или окраинно-континентальную природу (интракратонные щелевидные или окраинные бассейны). Заложение сумийского рифта C3 простирания произошло 2,55 млрд. л. (рис. 1) над длительно развивавшейся еще с архея областью конвергентных плит в CB части Карельского кратона и сопряжено с глобальной эпохой раскола первых архейских микроконтинентов и рифтогенезом, происходившим над областью возникшего и длительно существовавшего крупного мантийного плюма [1, 2]. Раскрытие палеопротерозойского рифта сопровождалось излиянием базит-ультрабазитовых магм в Лапландском ЗП на территории Финляндии и на Ветреном Поясе в восточной Карелии. В Беломорье в это время в условиях сильного сжатия внедрились лишь небольшие интрузивные тела лерцолит-габбро-норитового комплекса и рои даек (2433–2460 млн. л.). Сопряженно с главной рифтогенной структурой заложились зоны CB трансформных разломов, к которым приурочены расслоенные базит-гипербазитовые интрузии (Бураковская, Монастырская и Олангской группы). Палеопротерозойский Лапландско-Карельский рифт отчетливо фиксируется в геофизических полях как самостоятельная C3 структура. Крупные интрузивные базит-гипербазитовые тела (в C3 и ЮВ частях Карельского кратона) выделяются по аномальным значениям магнитного поля, а тектонические нарушения (трансформные разломы) - по смещению этих аномалий. И лишь на границе кратона с Беломорской складчатой областью маломощные интрузивные тела проявлены не контрастно на крупномасштабных картах аномального магнитного поля. С сумийскими базит-гипербазитовыми интрузиями связаны месторождения и проявления хромитовых, сульфидно-медно-никелевых и титаномагнетитовых руд, содержащих ЭПГ и Au [3-5].

Рис. 1. Лапландско-Карельский палеопротерозойский рифт и региональное положение участка Травяная Губа.

1 – каледониды, 2 – рифтогенные палеопротерозойские осадочно-вулканогенные образования, 3 – аккреционные палеопротерозойские образования; 4 – гранитоиды (1.8-1.74 млрд. л.); 5 – расслоенные интрузии и дайковые тела (PR1 sm), 6 – тектонические зоны, глубинные диагональные и ортогональные трансформные разломы. Треугольник – участок Травяная Губа. Геологические схемы построены на основе работ [1-3, 5].

Интрузивный базит-гипербазитовый магматизм Беломорского складчатого пояса представлен деформированными и метаморфизованными телами и дайками разного возраста (AR2-PR1). Это амфиболиты по габбро (AR2), метаморфизованные небольшие тела и дайки лерцолит-габбро-норитов, габбро-анортозитов (~2,45 млрд. л.), гранатовые габбро (2,1-2,06 млрд. л.) [6]. В связи со свекофеннскими коллизионными процессами, наиболее интенсивно проявившимися в Беломорском складчатом поясе 1,9-1,8 млрд. лет назад, все породы были деформированы и метаморфизованы в условиях повышенных температур и давлений. Оруденение, сопровождающее интрузивные тела, сейчас включает как раннемагматические минералы, так и минеральные ассоциации перекристаллизованных руд.

Рис. 2. Геологическое строение участка Травяная Губа. (Схема построена на основе материалов В.С. Степанова [7] и авторов):

1 – интрузивные вебстериты и гранатовые амфиболиты по габбро, 2 – гранито-гнейсы, 3 – кианит-гранат-слюдистые сланцы, 4 – гнейсы по агломератовым туфам, 5 – амфиболиты по базальтам, 6 – рудные тела, 7 – элементы залегания и участок детальных геофизических работ. А-А1 – разрез.

Проявление ильменит-титаномагнетитовых руд Травяная Губа (рис. 2) приурочено к небольшой деформированной расслоенной интрузии, представленной оливиновыми и рудными вебстеритами и гранатовыми амфиболитами по габбро (PR1 sm) в западной части Беломорского пояса [7]. Вмещающие толщи сложены амфиболитами, гранат-биотитовыми гнейсами и кианит-содержащими сланцами лопийского возраста (AR2). Богатая рудная залежь расположена в лежачем боку интрузивного тела и имеет плотность до 4 г/см³, мощность 45 м, длину до 200 м. К ней приурочена магнитная аномалия (до 50000 нТл). Руды дифференцированы по составу и магнитным свойствам [8]. Сильномагнитные (до 590х10⁻³ ед. СИ) разности представлены богатыми существенно титаномагнетитовыми и ильменит-титаномагнетитовыми рудами, слабомагнитные (до 4x10⁻³ ед. СИ) – ильменитовым минеральным типом. Pt-Pd минералы и Au приурочены к богатым титаномагнетитовым рудам с вкрапленными, сидеронитовыми и симплектитовыми структурами, содержащими сульфиды меди (до 4 %). Минералы Pd и Pt входят (табл. 1) в состав арсенидов и стибиоарсенидов с Bi, Te (изомертиит, Sb-As-палладинит, гуанглинит, Вi-винцентит, сперрилит, Pd-Pt-арсениды и др.), реже они образуют интерметаллиды, сульфиды или встречаются в самородном виде [9]. Концентрация благородных металлов (платиноидов и золота) составляет в сумме до 3,5-4 г/т [7]. В ильменитовом типе руд концентрация ЭПГ резко снижается: в рудах встречаются Rh-сперрилит, самородные Ag, Ві, реже галенит, киноварь (табл. 2), из акцессорных минералов развиваются циркон, монацит, что отражает влияние коровых процессов (метаморфизма и гранитообразования).

МИНЕРАГЕНИЯ ДОКЕМБРИЯ

Компо-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ненты			_		_	-	-	-	-				_		-
Fe (%)	0.97	3.12		2.04	4.09	1.20	1.8	1.36			1.37	1.60	2.96	2.63	4.34
Co											1.32	3.23			
Ni				1.42		0.97	5.11	0.72			7.37	6.12	5.18	18.03	3.18
Cu	2.37	1.38	2.42	2.5	0.63	3.14	3.62				1.23				16.27
As	9.37	8.90	9.56	13.7	8.38	20.08	20.01	12.75	10.42	18.78	25.04	14.76	11.75	19.66	9.92
Pd	71.45	70.07	74.43	69.26	67.39	74.61	69.38	83.23	82.37	81.22	62.31	53.45	56.14	50.01	53.96
Pt					8.49						1.36				2.87
Sb	9.92	4.53	9.48	5.68	6.57				7.22			1.42	2.09	2.26	2.03
Bi	4.91	9.71	4.11	3.42	4.02			1.94				19.42	21.88	7.41	7.43
Te	1.01	2.28		1.98	4.53										
Сумма	100	99.99	99.99	100	100	100	100	100	100.01	100	100	100	99.99	100	100
Автор	1006-	1006-	1006-	1006-	1006-	1006-	1007-	1006-	1006-	1006-	1007-	1006-	1001-	1001-	1007-
№ обр.	12-1	16-1	38-1	18	21-1	25-1	23-1	24-1	31-1	34-1	8-1	36-1	9-1	12-1	13-1
Ат.%	б Пересчет состава на атомные проценты														
Fe	1.79	5.84		3.62	7.76	2.03	2.93	2.45			2.19	2.89	5.6	4.13	7.10
Со											2.01	5.52			
Ni				2.39		1.56	7.94				11.23	10.52	9.31	26.93	4.95
Cu	3.87	2.28	3.95	3.88	1.01	4.68	5.20	1.14			1.72				23.40
As	12.97	12.42	13.26	18.06	11.54	25.37	24.46	17.07	14.3	24.72	29.88	19.87	16.56	23	12.10
Pd	69.65	68.85	72.66	64.3	64.32	66.36	59.47	78.42	79.61	75.28	52.35	50.65	56.14	41.21	46.34
Pt					4.45						0.62				1.34
Sb	8.46	3.89	8.09	4.61	5.41							1.17	1.81	1.63	1.52
Bi	2.44	4.86	2.04	1.62	1.96							9.37	11.05	3.11	3.25
Те	0.82	1.87		1.53	3.56										
К:А	3:1	~3:1	~3:1	3:1	~3:1	3:1	3:1	~4:1	4:1	3:1	7:3	7:3	7:3	~7:3	~5:1
Fe (%)	3.47	23.8			2.63	2.67									0.86
Co	15.07														
Ni	6.43					0.75									
Cu			5.99	6.24		1.16	2.12	0.96							
As	30.17		3.18		26.72	35.78	23.5		43.08	42.84	42.31	43.21	41.79	41.31	41.12
Pd	44.86	47.92	66.80	66.54	44.15	24.43	12.3	2.37							
Pt					29.13	34.54	62.09	96.67	56.92	57.16	57.64	56.79	55.58	54.64	48.55
Rh							0-107	,,					1.9	3.07	7.18
S		28 29				0.67							0.72	0.99	2.48
Sn		20.22	22.48	26		0.07							0.72	0.77	2.10
Au			1 56	20											
Сумма	100	99 99	100.01	100	100	100	100	100	100	100	100	100	99 99	100.01	99 99
Автор	1006-	1006-	1006-	1001-	1006-	1006	1006	1006	1006	1006	1006	1001	1003	1003	1003
Nº ofn	29-1	25-2	17-1	11-1	32	-30-1	-15-1	-15-2	-19	-20	-28	-8-1	-22	-23	-26
Ат %	$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000000000000000000000000000000000$														
Fe	4 97	24 23			-	4 86		u 110 u 10		poquin					1.27
Co	20.42	220													1.27
Ni	8 75					1 29									
Cu	0.70		9 79	10.3		1.2	4 27	2.83					1		
Δe	32.17	1	4 4 1	10.5	38 73	48 53	40.17	2.05	66 34	66.12	65.63	66 46	63.12	61.81	57 35
Pd	33.68	25.61	65 27	66.25	45.06	23.34	14.8	4 1 9	00.54	00.12	05.05	00.40	05.12	01.01	51.55
Dt	55.00	25.01	05.21	00.23	16 21	17 00	40.76	92.08	33.66	33.88	34 37	33 54	32.24	31.40	26.01
Rh					10.21	11.77	+0.70	12.70	55.00	55.00	57.57	55.54	2.24	3 3/	7 20
C C		50.16											2.09	3.34	8.09
5 52		50.10	10.7	22 15									2.34	5.44	0.00
<u> </u>			19./	23.43											
AU	2.1	1.1	0.82	2.1	2.2	1.1	2.2		1.2	1.2	1.2	1.2	1.2	1.2	1.2
к:А	2:1	~1:1	5:1	~5:1	~5:2	1:1	3:2	-	1:2	1:2	1:2	1:2	~1:2	~1:2	~1:2

Таблица 1. Минералы палладия и платины (мас. %)

Примечание. Ан. 1-5 – Ві-Sb-As-палладиниты (Pd, Cu)₃(As, Sb, Bi, Te)₁, из них ан. 5 – Ві-винцентит (Pd, Pt)₃(As, Sb, Bi, Te)₁; ан. 6-7 - арсенопалладинит (Pd₃As); ан. 8-10 – арсениды палладия (от Pd₄As – до Pd₃As); ан. 11 - Pd-Ni-арсенид (Pd, Ni)₇(As)₃; 12-14 – Pd-Ni-бисмутоарсениды (Pd, Ni)₇(As, Bi)₃; 15 - ан. (Pd, Cu)₅(As, Bi)₁; 16 – Co-Pd арсенид (Pd, Co, Ni)₂As, Co-маякит ?); ан. 17 – сульфид палладия (Pd, Fe)S - ?); ан. 18-19 – станнопалладинит (Pd, Cu, Au)₃(Sn, As); 20-22 – Pt-палладоарсениды; 23 – платина; 24-27 – сперрилит PtAs₂, 28-30 – родиевый сперрилит (Pt, Rh)As₂.

Компо- ненты	1	2	3	4	5	6	7	8	9	10	11	12	13
Ag			98.8	99.04	98.50								
Bi						95.62	100						
S		0.75	1.2	0.96	1.20			14.88	14.25	15.58	15.04	28.66	22.87
Pb								85.12	85.75				37.44
Hg										84.42	84.96		
Fe													3.65
Sb												71.34	36.04
Se	97.48												
Сумма	97.48	100	100	100	100	95.62	100	100	100	100	100	100	100
№ обр.	1006	1001	1003	1015	7340-5	1003	7340-5	1015	1007	1015	1007	1015	1015

Таблица 2. Самородные металлы и редкие сульфиды и сульфоантимониды (мас. %).

Примечание. 1 – селен (титаномагнетитовые руды). 2-5 – самородное серебро, 6-7 – висмут, 8-9 – галенит, 10-11 – киноварь, 12 – антимонит, 13 – бертьерит. (1-2, 6 - ильменит-титаномагнетитовые руды, 3-5, 7-13 – ильменитовые руды). Сумма приведена к 100 %.

Литература

1. Щеглов А.Д., Москалева В.Н., Марковский Б.А. и др. Магматизм и металлогения рифтовых систем восточной части Балтийского щита. СПб.: «Недра», 1993. 244 с.

2. Турченко С.И. Металлогения тектонических структур протерозоя. СПб: «Наука», 2007. 175 с.

3. Металлогения Карелии. Петрозаводск, 1999. 335 с.

4. Гроховская Т.Л., Лапина М.И.: Ганин В.А., Гриневич Н.Г. Проявления ЭПГ-минерализации в Бураковском расслоенном комплексе (Южная Карелия, Россия) // Геология рудн. мест. 2005. Т. 47. № 4. С. 315-341.

5. Филиппов Н.Б., Голубев А.И., Малашин М.В. Металлогения палеопротерозоя // Строение и динамика литосферы Восточной Европы. М.: «Геокарт, Геос», 2006. Вып 2. С. 181-187.

6. Степанов В.С. Основной магматизм докембрия Западного Беломорья. Л.: «Наука», 1981. 216 с.

7. Степанов В.С. Благороднометальное рудопроявление Травяная Губа и возможная генетическая связь его с комплексом габбро-анортозитов западного Беломорья // Геология и полезные ископаемые Карелии. Петрозаводск, 2001. Вып. 4. С. 54-62.

8. Земцов В.А., Кулешевич Л.В., Цельмович В.А. Минералогия и магнетизм благороднометалльных титаномагнетитовых руд участка Травяная Губа (Северная Карелия) // Палеомагнетизм и магнетизм горных пород. Теория, практика, эксперимент. М.: «Геос», 2007. С. 59-63.

9. Кулешевич Л.В., Земцов В.А., Слюсарев В.Д. Минералогия и локализация благороднометалльного оруденения в Северной Карелии по геолого-геофизическим данным // Геология и минерагения Кольского региона. Труды Всерос. науч. конф. и IV Ферсмановской научной сессии. Апатиты, 2007. С. 105-109.

Архейские литосферные кили и перспективы алмазоносного магматизма Северо-Востока Балтийского щита

Зозуля Д.Р.

Геологический институт Кольского НЦ РАН, г. Апатиты, e-mail: zozulya@geoksc.apatity.ru

Формирование глубоких литосферных килей архейского возраста является одним из важнейших условий проявления алмазоносного магматизма. Считается, что кимберлитовая магма образуется на границе литосферы и астеносферы и при подъеме к поверхности дренирует различные уровни литосферной мантии. При этом ее алмазоносность будет зависеть от того, достигает ли нижняя граница литосферы алмазных фаций глубинности и какова мощность дренируемого алмазного «окна».

Кольский регион рассматривается как перспективный на коренной алмазоносный магматизм, так как для него выполняется наиболее общая региональная геолого-структурная предпосылка обнаружения кимберлитов – их преимущественная приуроченность к архейским геологическим обра-