Влияние параметров вещественного состава руд на технологические операции

Параматри ваниатраннага		Влияние на операцию				
Параметры вещественного состава	Операции	Тагарское месторождение	Юнь-Ягинское месторождение			
Неравномерное распределение магнетита	CMC	Позволяет повысить качество и сократить объем руды поступающей на последующее тонкое измельчение и глубокое обогащение				
Гранулометрический состав и включения силикатов	Оптимальная крупность измельчения	Неудовлетворительное раскрытие магнетита при измельчении и образование большого количества различных сростков даже в классе -0,074+0,044 мм	Удовлетворительное раскрытие достигается в крупности -0,074 мм			
Содержание магнетита		Выход концентрата				
Степень раскрытия магнетита Элементный состав и микронеоднородность магнетита	ММС	Содержание железа в концентрате				
Контрастность гравитационных свойств рудных и нерудных минералов	Гравитационное обогащение	Высокая контрастность обусловливает эффективность операции	Низкая контрастность обусловливает неэффективность операции			

ЛИТЕРАТУРА

- 1. Лебедева С.И. Микротвердость минералов. М.: Недра, 1977. 118 с.
- 2. *Пирогов Б.И.*, *Поротов Г.С.*, *Холошин И.В. и др.* Технологическая минералогия железных руд. Л.: Наука, 1988. 304 с.
- 3. *Сычева Н.А., Ожогина Е.Г., Броницкая Е.С., Тютюнник Н.Д., Стенин Н.Ю.* Обоснование целесообразности гравитационного обогащения магнетитовых руд Тагарского месторождения на основании минералоготехнологических исследований // Разведка и охрана недр. 2008. №11. С. 56-60.
- 4. *Азарнова Л.А.*, *Темнов А.В.*, *Ожогина Е.Г. и др.* Прогнозная оценка раскрытия магнетита на ранних этапах изучения вещественного состава скарново-магнетитовых руд // Разведка и охрана недр. 2008. №3. С. 54-58.

СУЛЬФИДЫ AU И AG В РУДАХ ЭПИТЕРМАЛЬНЫХ МЕСТОРОЖДЕНИЙ

Савва Н.Е. 1, Пальянова Г.А. 2

¹СВК НИИ ДВО РАН, г. Магадан, ²ИГиМ СО РАН, г. Новосибирск

Для обеспечения высокой извлекаемости золота и серебра из руд важное значение имеет информация об их минеральном составе и формах нахождения полезного компонента. Наряду с изоморфной невидимой (invisible) формой золота и серебра в рудах возможно присутствие микровключений минералов благородных металлов, которых известно уже более 200. В настоящем докладе особое внимание будет уделено Au-Ag сульфиду (Ag_3AuS_2) – ютенбогаардтиту, открытому в 80-е годы прошлого века [1] и считавшемися экзотическим минералом. В работах, опубликованных в последние два десятилетия, обращается внимание на более широкую его распространенность и возможность образования, как в эндогенных, так и экзогенных процессах [2-8].

Предварительное изучение минералого-геохимических и генетических особенностей месторождения Юное показало, что количество Au-Ag сульфида в рудах значимо наряду с самородным золотом, и данный объект может быть отнесен к электрум-акантит-ютенбогаардтитовому минеральному типу [3]. Цель наших исследований – изучить минералого-геохимические особенности рудообразования на примере одного из эпитермальных золото-серебряных месторождений, оценить соотношения самородной, сульфидной и изоморфной форм нахождения золота в рудах, а также разработать возможные физико-химические модели образования сульфидов золота и серебра в эндогенных условиях.

Геологическая позиция

Месторождение Юное располагается на юге Омолонского срединного массива (Магаданская область), открыто геологами Биркачанского отряда, в 1984 г. Руды локализованы в трубчатых телах - некках риолитов диаметром 90-200 м (рис. 1, 2). Площадь рудного поля сложена осадочно-вулканогенными и вулканогенными породами кедонской серии - агломератовыми, псефитовыми и псаммитовыми туфами (средний-поздний девон), вмещающими эти некки. На глубине 150-160 м бурением вскрыто пересечение одного из некков раннекарбоновыми базальтами (316-313 млн. лет по K-Ar, данные И.Н. Котляра, 1995 г.), которые вызвали термальный метаморфизм руд. Концентрации Au и Ag в рудах — 1-40 и 20-1200 г/т, а вариации Au/Ag 10-1 ÷ 10-2. Пробность самородного золота от 820 до 0‰.

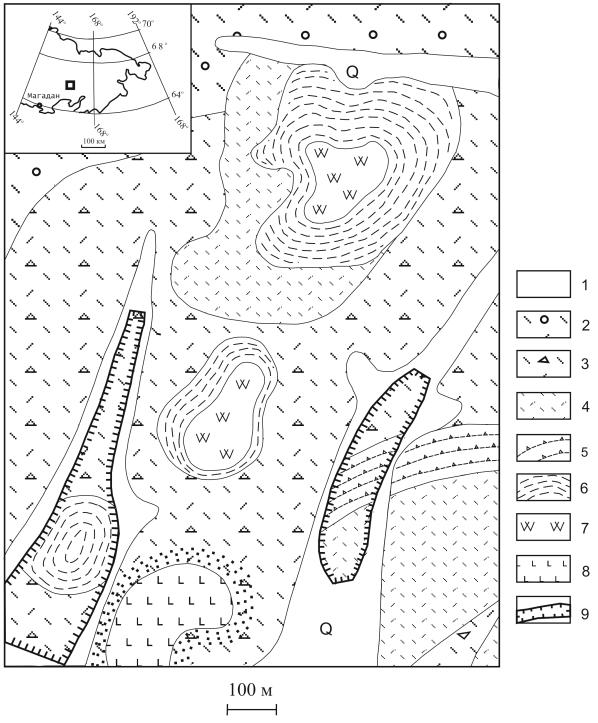


Рис. 1. Географическое положение и схематическая геологическая карта месторождения Юное. 1 - аллювиальные галечники, пески, супеси, илы современной поймы (Q); 2 - псаммитовые туфы риолитов (\mathbf{D}_{2-3} , \mathbf{Kd}^3); 3 – агломератовые туфы риолитов (\mathbf{D}_{2-3} , \mathbf{Kd}^3); 4 – риолиты (λ \mathbf{D}_{2-3}); 5 – туфопесчаники (\mathbf{D}_{2-3} , \mathbf{Kd}^3); 6 – краевые фации интрузивных риолитов; 7 – стволовые фации интрузивных риолитов; 8 - базальты; 9 – контуры отработанных россыпей.

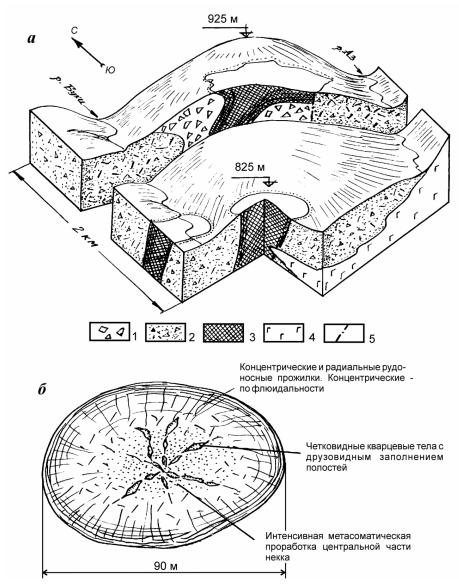


Рис. 2. Рудопроявление Юное: блок-диаграмма (а), поперечное сечение рудоносного некка (б); 1-4 - среднепозднедевонские вулканические образования: 1 - туфобрекчии риолитов, 2 - литокластические туфы риолитов, 3 - тела некков риолитов с тонкофлюидальной структурой в эндоконтактовых частях, 4 базальты; 5 - тектонические нарушения

Формы нахождения золота и серебра в рудах

<u>Самородная</u> - представлена двумя разновидностями - электрумом и кюстелитом. Среднее значение пробности по месторождению -600^{0} /₀, но отличается на различных эрозионных срезах (рис. 3, 4).

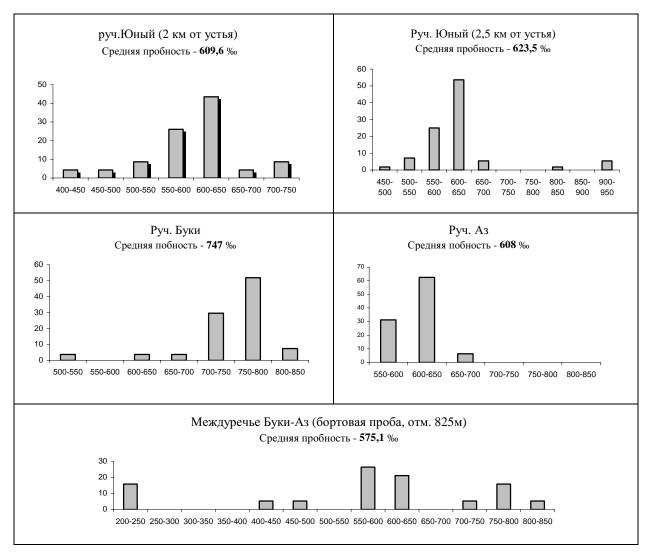


Рис. 3. Гистограммы пробности самородного золота на площади месторождения Юное: по оси абсцисс – интервалы пробности в ‰, по оси ординат – частота встречаемости, %

Характеристика самородного золота из различных горизонтов месторождения приведена в таблице 1. Структурным травлением установлено зональное строение самородного золота, по-видимому, первично-коллоидной природы. Для самородного золота также характерны структуры грануляции (рис. 5) с образованием в межзерновом пространстве прожилков низкопробного золота, которые образуются по данным В.Г.Моисеенко [9] в результате сильного прогрева - при температурах не ниже 500° С.

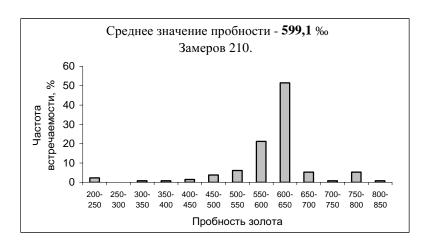


Рис. 4. Гистограмма усредненной пробности самородного золота месторождения Юное

Однако монокристаллы электрума не обнаруживают признаков метаморфизма и, возможно, являются продуктами переотложения, наступившего после дезинтеграции первичного золота.

Особенности самородного золота месторождения Юное

	•	•				
Vonovenonvonvon	Горизонты (по гипсометрическим отметкам), м					
Характеристики	780	825	925			
Классы крупности, %						
Тонкодисперсное(1-10 мкм)	-	5	10			
Пылевидное(0,01-0,05 мм)	40	45	55			
Очень мелкое(0,05-0,1мм)	40	40	30			
Мелкое (0,1-0,9 мм)	15	5	5			
Среднее(1,0-2,0 мм)	5	5	-			
Форма частиц	Монокристаллы,	Монокристаллы,	Монокристаллы,			
	комковидные,	комковидные (в	комковидные,			
	проволоковидные	рубашках	пленочные,			
		айтенбогардтита)	дендритовидные			
Средняя пробность, ‰	602	608	575			
Парагенезис минералов	Кварц, пирит,	Кварц, пирит,	Кварц, пирит,			
	акантит	акантит, пирсеит,	акантит, галенит			
		ютенбогаардтит,				
		сфалерит, агвиларит				

Сульфидная форма представлена ютенбогаардтитом, присутствующем в заметных количествах, составляя 10-15% на всех участках (наиболее крупное скопление в расчистке 1, горизонт 825 м). Он слагает каймы на золоте, образует монокристаллы и кристаллические сростки размером до 4-5 мм (рис. 6). Минерал ассоциирует с электрумом, акантитом, реже — со сфалеритом. С акантитом имеет резкие прямолинейные границы срастаний, не обнаруживающие признаков замещения. Цвет минерала темно-серый со слабым розовато-фиолетовым оттенком. Отражение ниже, чем у акантита. В срезе аншлифа на отдельных образцах наблюдается кристаллически-зернистое строение агрегатов с отчетливыми очертаниями зерен. По оптическим свойствам соответствует справочным описаниям. Химический состав минерала нестабилен: Аи — 19.9-26.1; Ад — 64.1-74.8; S — 5.6-9.5 мас.% (табл. 2). В целом же отмечается постоянный дефицит S и избыток Ад по сравнению с теоретическим составом.

Таблица 1

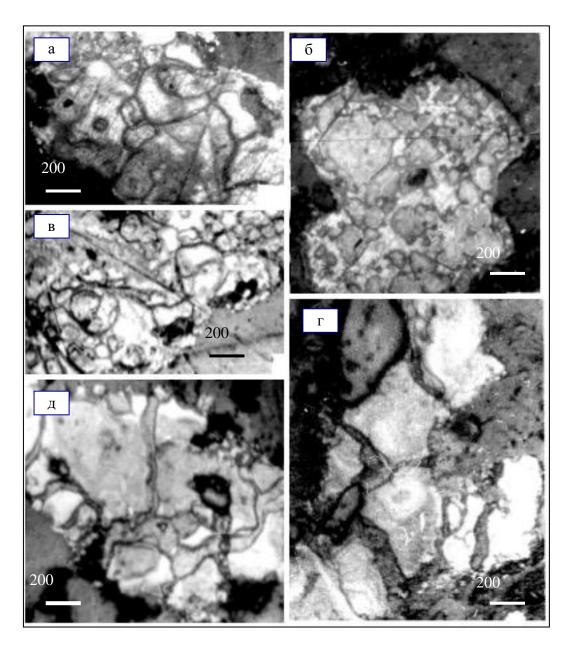


Рис. 5. Структуры грануляции самородного золота месторождения Юное (Аншлифы, травление HCl + CrO₃)

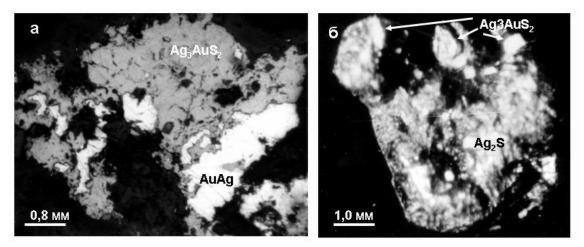


Рис. 6. Формы выделений ютенбогаардита из руд месторождения Юного: а) срастание зернистого агрегата ютенбогаардтита с электрумом, аншлиф; б) нарастание идиоморфных кристаллов ютенбогаардтита на комковидное обособление акантита. Снято с бинокулярной лупой

<u>Изоморфная (invisible) форма</u> нахождения золота установлены в акантите и сфалерите. Концентрации Au, по данным микрозондового анализа, в акантите варьируют от 0.2 до 2.2 мас.%, в сфалерите - от 0.5 до 1.2 (табл. 2).

Таким образом, соотношение различных форм золота в рудных концентратах следующее (рис. 7): самородное золото – 35%, ютенбогаардтит – 10 мас.%, в акантите – 50% и сфалерите – 5%. Следовательно, для успешного обогащения руд месторождения Юного необходимо учитывать не только самородное золото, но все остальные формы нахождения золота.

 Таблица 2

 Химический состав основных рудных минералов месторождения Юное

№	Концентрации элементов, мас,%										
анализа	Ag	Au	Sb	As	S	Se	Cu	Pb	Zn	Fe	Σ
	Пирит (с блоковой отдельностью)										
1*	0,1	,000	0,0	0,0	53,76	,00	0,11	,08	,19	46,69	100,94
	Акантит (ранняя генерация)										
1	78,1	2,2	-	-	13,8	0,4	3,2	-	-	-	97,7
2	80,9	2,0	-	-	14,7	1,4	0,5	-	-	-	99,5
3	85,4	0,2	-	-	12,6	0,7	0,2	-	-	-	99,1
Акантит (поздняя генерация)											
1	82,0	0,3	-	-	13,6	0,0	0,0	-	-	-	95,9
2	84,1	0,0	-	-	14,8	0,0	0,2	-	-	-	99,1
3	85,0	0,0	-	-	14,2	0,0	0,2	-	-	-	99,4
						има на га		1		,	
1	87,9	-	-	0,2	10,1	-	0,1	-	-	-	98,3
2	88,6	-	-	0,5	8,2	-	0,1	-	-	-	97,4
3	87,3	-	-	0,3	10,2	-	0,0	-	-	-	97,8
				Гале		няя генеро		1		,	
1	1,6	-	0,0	-	12,0	0,1	0,1	84,0	0,1	-	97,8
2	2,0	-	0,0	-	12,3	0,1	0,1	83,5	0,1	-	98,1
3	14,3	-	0,0	-	12,9	0,1	0,0	66,3	0,0	-	93,7
4	14,5	-	0,0	-	11,1	0,0	0,2	71,0	0,0	-	96,6
	T		•	Гален		няя генер		•	1	T	
1	0,0	-	0,1	-	11,5	0,1	0,0	87,8	0,0	-	99,5
2	0,0	-	0,0	-	12,2	0,1	0,1	86,7	0,1	-	99,0
3	0,0	-	0,1	-	11,1	1,3	0,0	85,5	0,0	-	98,1
4*	0,30	0,04	0,0	0,0	12,85	0,73	0,0	85,6	0,0	0,0	99,52
	T		•	•	Сфал	ерит	•	•	1	T	
1	0,3	1,2	-	-	34,6	-	-	-	61,5	0,1	97,6
2	0,3	0,5	-	-	33,5	-	-	-	60,3	0,1	94,7
3*	0,1	0,0	0,0	0,0	33,01	0,0	0,13	,06	65,0	0,8	99,1
	1		T	T		пирит	T	T	1	Т	
1	1,72	,039	0,0	0,0	34,81	0,0	32,95	0,11	0,11	28,53	98,26
	1		T			гаардтит	1	1	T	Т	
1	74,8	20,4	-	0,0	5,6	0,0	-	-	-	0,1	100,9
2	66,9	23,4	-	0,0	9,0	0,0	-	-	-	0,0	99,3
3	64,1	25,4	-	0,0	8,9	0,0	-	-	-	0,0	99,4
4	64,8	26,1	-	0,0	7,5	0,0	-	-	-	0,0	98,4
5	69,9	19,9	-	0,0	8,5	0,0	-	-	-	0,9	99,2

[&]quot;Camebax", СВКНИИ ДВО РАН, аналитик Горячева Е.М.

^{*-} САМЕСА, ИГиМ СО РАН, аналитик - к.г.-м.н. Е.Н.Нигматулина

Эталоны: Zn, S-ZnS; Se-ZnSe; $Ag, As-AgAsS_2$; Fe-FeS; $Cu-Cu_2S$ ($CuFeS_2$); $Au-Au, Pb-PbS, Sb-Sb_2S_3$, As-NiAs, Te-Te (PbTe)

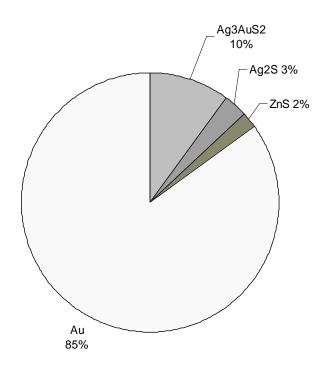


Рис. 7. Соотношение золото- и серебросодержащих минералов в рудах месторождения Юное

Генетические особенности образования золото-серебряных сульфидов

Из литературы известны три точки зрения на происхождение ютенбогаардтита и петровскаита, основанные на результатах исследования, как природных парагенезисов, так и экспериментальных данных:

- 1. При окислении Au(Ag)-содержащих пирита и арсенопирита в корах выветривания [1, 2, 5, 10];
- 2. В результате переотложения сульфидных минералов и раннего самородного золота при их взаимодействии с гидротермальными растворами [11-12];
 - 3. При метаморфизме руд [13. 14].

С целью построения физико-химических моделей образования ютенбогаардтита и петровскаита («гипогенной» и «гидротермальной») и проверки ранее выдвинутых гипотез были выполнены термодинамические расчеты.

«Гипергенная модель» применима к таким месторождениям, как Улахан [7], Бадран, Задержнинское [15], Хопто [16] (Россия), Майкаин (Казахстан) [9], Назарено (Перу), Понгкор (Индонезия) [5, 13], Монинг Стар (США) [17]. В зоне окисления этих месторождений, по-видимому, имело место растворение и переотложение ранее сформированных минералов ранних Au-Ag-содержащих парагенезисов с участием поверхностных вод. Доказательством гипергенного генезиса ютенбогаардтита, вторичного самородного золота и акантита-II служат: а) приуроченность ютенбогаардтита к катаклазированному пириту, подвергшемуся окислению и замещению гетитом, гидрогетитом или лимонитами; б) разнообразие гипергенных минералов Cu, Zn и Fe - азурит, малахит, англезит, смитсонит, мелантерит, ковеллин и халькозин. Источником золота и серебра для ютенбогаардтита могли служить минералы серебра и частицы самородного золота, образующиеся на ранних гипогенных стадиях, продуктивных на указанные металлы. Источником серы, повидимому, были сульфиды, в первую очередь - пирит, а также галенит, халькопирит или акантит. Ранее [18] на основе минералого-геохимических исследований руд месторождения Улахан (северо-восток России) и термодинамических расчетов была разработана модель образования ютенбогаардтита за счет самородного золота и серы из пирита или других сульфидов в зонах окисления.

Присутствие сульфидов золота и серебра в гипогенных минеральных ассоциациях характерно для месторождений – Широтан (Индонезия) [19], Юное, Кубака, Джульетта, Якутское и Альфа (Россия) [6, 10, 20], что позволяет предположить гипогенный генезис ютенбогаардтита на этих месторождениях. На примере месторождения Юное построена модель с участием гидротермальных растворов.

«Гидротермальная модель». Термодинамические расчеты выполнены в системе Si-Al-Mg-Ca-Na-K-Fe-Pb-Zn-Cu-Ag-Au-S-Cl-H₂O в интервале температур 25-400°С и давлений 1-1000 бар. Исходные термодинамические данные для данной системы приведены в [21, 22]. Рассмотрены несколько наиболее вероятных сценариев рудообразующих процессов на исследуемом объекте: 1 - взаимодействие холодных и подогретых метеорных вод, просачивающихся с поверхности по трещинам вглубь и реагирующих с рудовмещающей породой – риолитом; 2 – эволюция восходящего постмагматического флюида, приводящая к образованию хлоридно-углекислого раствора, взаимодействующего с риолитом при температурах 100-400°С; 3 – ступенчатое охлаждение гидротермальных рудоносных растворов; 4 – быстрое охлаждение гидротермальных рудоносных растворов при смешении с холодными поверхностными водами. В качестве исходной рудовмещающей породы был задан риолит с фоновыми количествами Рb, Zn, Cu, Cl, S, Ag и Au. Термодинамическое моделирование выполнено с помощью компьютерного программного комплекса "HCh" [23] и внешнего модуля

ЭЛЕКТРУМ, рассчитывающего коэффициенты активности Au and Ag для неидеальных Au-Ag твердых растворов. При моделировании использовался метод «степени протекания реакции» или «ξ-реактора» и «ступенчатого охлаждения гидротермальных растворов» [24-26]. В качестве исходной рудовмещающей породы в наших модельных построениях был взят неизмененный риолит месторождения Юное. Из-за отсутствия данных по содержанию некоторых элементов в рудовмещающих породах исследуемого объекта в наших расчетах были заданы фоновые (кларковые) количества Pb, Zn, Cu, Cl, S, Ag и Au в кислых породах [27].

Расчеты по модели, имитирующей взаимодействие метеорных вод с риолитом, количество которого увеличивается по мере инфильтрации раствора, показало, что формирующиеся поверхностные воды являются щелочными (pH>8) и имеют преимущественно SO_4 -Cl- H_2CO_3 -Na-Si состав. Минеральные составы ассоциаций, полученные для 25° С и более высоких температур по этому варианту расчетов и характерные для месторождения Юное, отличаются. В модельных ассоциациях присутствует гетит, среди сульфидов преобладает сфалерит, а ютенбогаардтит и самородное золото отсутствуют. Низкие концентрации сульфидной серы ($<10^{-7}$ m), высокий окислительный потенциал и щелочной характер формирующихся поверхностных вод не благоприятны для образования ютенбогаардтита и петровскаита.

Составы минеральных ассоциаций, установленные для разных стадий рудоотложения на месторождении Юное, а также полученные по модели, имитирующей взаимодействие хлоридно-углекислых гидротерм и риолита в разных термоградиентных зонах (Т=400, 300, 200 и 100°С), в основном совпадают. Среди минералов метасоматитов преобладают кварц, микроклин, альбит, серицит при высоких R/W, образование каолинита возможно при температурах 200-100°С и низких соотношениях R/W. Эта модель объясняет образование высокопробного золота при 300°С, а также Ag₂S и низкопробного золота при 200-100°С за счет фоновых содержаний Au и Ag из риолитов при высоких R/W. Однако по результатам этого варианта расчетов в составе рудных минералов отсутствует ютенбогаардтит и петровскаит.

Процесс оруденения условно разделен нами на три стадии (табл. 3). На основании изучения взаимоотношений рудных жил и прожилков, текстурного анализа в штуфах, а также микроминеральных срастаний.

Схема стадийности минералообразования на месторождении Юное

Минерал	Стадии минерализации				
	Метасома-	Гидротермальная			
	тическая	II	III		
Каолинит					
Серицит					
Тальк					
Кварц					
Халцедон					
Кальцит					
Цеолит					
Пирит					
Галенит					
Сфалерит					
Халькопирит					
Ag-теннантит					
Акантит					
Электрум					
Кюстелит					
Ютенбогаардтит					
Пирсеит					
Агвиларит					
Самородное Ag					
Важнейшие	Пятнистые,	Колломорф-	Распада твер-		
текстуры	вкрапленные	ные, тонко- вкрапленные	дых растворов, каемча-		
**		вкрапленные	тые, гребен-		
			чатые		
Температуры					
минералообразо-	?	250-140°C	500-140°C		
вания по минералам		(пирит,	(грануляция		
термометрам		акантит)	в самород-		
			номо золоте,		
			агвиларит,		

С первой метасоматической стадией связаны кварц-каолинит-гидрослюдистые изменения риолитов, слагающих некки и образование пирита первой генерации. Со второй стадией связано формирование кварц-пирит-галенитового минерального парагенезиса (название дано по наиболее распространенным нерудным и рудным минералам). Наличие реликтовых минеральных ассоциаций и неоднородная структура самородного золота позволяют предположить, что в составе раннего парагенезиса были широко распространены халцедон с коллоидно-дисперсным золотом и кварц, в интерстициях которого позже отложились серебросодержащие галенит и теннантит в ассоциации с халькопиритом (табл. 3). Этот парагенезис максимально развит в центральной части некков, а на периферии рудная вкрапленность встречается реже. Для третьей стадии характерна перекристаллизация и значительное укрупнение таких минералов как кварц, галенит, сфалерит и самородное золото. Здесь отмечается преобладание акантита и ютенбогаардтита. Вторая и третья стадии, возможно, связаны с пострудной магматической активизацией и внедрением базальтов в околорудное

Таблица 3

пространство, что привело к прогреву рудных тел и привносу высокотемпературных растворов, вызвавших переработку рудного вещества, растворение минералов ранних парагенезисов и образование новых.

Трехстадийная последовательность отложения минеральных ассоциаций и вертикальная зональность месторождения Юное хорошо описываются данными, полученными по модели «ступенчатого охлаждения рудоносных гидротерм». Главные минералы околорудных метасоматитов и кварцевых жил (по данным расчетов) идентичны наблюдаемым в природных парагенезисах. С приближением к поверхности по мере снижения температуры уменьшается количество кварца, пирита и возрастает - каолинита. К тому же по этой модели при температурах ниже 200°С из рудоносных хлоридно-углекислых высокотемпературных растворов происходит отложение ютенбогаардтита, петровскаита, акантита, кюстелита или самородного серебра (табл. 4). Модель «быстрого охлаждения рудоносных гидротерм за счет смешения с холодными поверхностными водами» также подтверждает возможность образования Аи-Ад сульфидов совместно с кварцем, каолинитом, пиритом, сфалеритом и низкопробным золотом или самородным серебром. Минеральные ассоциации с ютенбогаардтитом и акантитом образуются, когда смешанные растворы остаются еще кислыми и концентрации сульфидной серы достаточно высокие тизс» 10°4.

Полученные нами результаты для разных моделей, вероятно, отражают отдельные процессы рудообразования, которые имели место на месторождении Юное. Сценарий взаимодействия разных количеств риолита с хлоридно-углекислыми гидротермами по модели « ξ -реактора» объясняет образование Ag_2S и электрума на ранних стадиях рудообразующего процесса. В вариантах ступенчатого и быстрого охлаждения рудоносного гидротермального раствора образуются минералы кварцевых жил - кварц, мусковит, микроклин, каолинит и сульфиды. Результаты расчетов составов минеральных ассоциаций по этим моделям показали соответствие составам минеральных ассоциаций, характерным для измененных риолитов месторождения Юного, а также выявили возможность образования Au-Ag сульфидов в процессе эволюции рудоносных гидротерм при снижении температуры и изменении ред-окс потециала и pH растворов (табл. 4).

Таблица 4 Равновесные моляльные концентрации Au, Ag, H_2S , H_2 и минеральные ассоциации, образующиеся в результате взаимодействия риолита с рудоносным раствором, охлаждающимся от 400 до 0°С. Шаг снижения температуры 50°С. Количество новых порций риолита, который реагирует с раствором в процессе охлаждения $10^{-2} \cdot ((i+1)^{0.5} - i^{0.5})$, гле $i=1\div 8$

Характеристика рудоносных растворов						Минералы равновесных ассоциаций			
T_{i} - T_{i+1} , p_{i} - p_{i+1} , δap	$ m m_{Ag}$	m_{Au} m_{H2S} m_{H2} pH_t Породо-		породо-	Рудные	Au,			
P ₁ P ₁₊₁ , oup						образующие	Fe, Pb, Zn, Cu	Ag	
400-350°C, 1000-350	4.6·10 ⁻⁶	2.3·10 ⁻⁷	2.4·10 ⁻²	1.7·10 ⁻⁴	5.4	Q>Mi>Musc (Chl<0,03%)	Py>Sph> Cpy>Ga(2.4%	-	
350-300°C, 350-300	- " -	- " -	1.8·10 ⁻²	2.9·10 ⁻⁴	4.6	Q>Musc	Sph>Py>Cpy(12%)	-	
300-250°C, 300-250	3.1.10-6	- " -	1.3·10 ⁻²	6.8·10 ⁻⁵	4.0	Q>Prh> Musc	Sph>Py>Cpy> Ga(2.4%)	Arg	
250-200°C, 250-200	8.0.10-7	- " -	1.1.10-2	7.8·10 ⁻⁶	4.2	Q>Musc> Kaol (C<1%)	Sph>Py>Ga> Cpy(7)	Arg	
200-150°C, 200-150	7.6·10 ⁻⁷	- " -	9.8·10 ⁻³	4.2·10 ⁻⁷	4.3	Q>Kaol (C<0.4%)	Py>Sph>Brn> Ga(2.4%)	Ac	
150-100°C, 150-100	5.3·10 ⁻⁷	1.5·10 ⁻⁷	9.1·10 ⁻³	1.3·10 ⁻⁸	4.3	Q>Kaol (C<0.1%)	Py>Cov>Sph> Ga(<2.4%)	Uyt	
100-50°C, 100-50	3.0·10 ⁻⁷	1.2·10 ⁻⁸	7.3·10 ⁻³	2.2·10 ⁻¹⁰	4.4	Q>Kaol(C<1%, S<1%)	Py>Sph>Cov> Ga(<2.4%)	Petr, Uyt	
50-0°C, 50-1	3.7·10 ⁻⁸	9.3·10 ⁻¹²	5.1.10-4	1.4·10 ⁻¹²	4.8	Q>Kaol (C,S)	Py>Sph>Cov> Ga(2.2%)	Uyt,A c	

Результаты термодинамического моделирования также свидетельствуют о том, что образование ютенбогаардтита может происходить при участии хлоридно-углекислых гидротерм за счет фоновых количеств Au, Ag и S из рудовмещающих риолитов. При соотношении риолит/раствор более 10, фоновых содержаний металлов и серы в породе достаточно для обеспечения концентраций золота и серебра в растворе на уровне 10^{-5} - 10^{-6} моль/ $1000\ \Gamma\ H_2O$.

Возможных сценариев рудоотложения, безусловно, значительно больше. Например, модель кипения гидротермальных растворов, предлагаемая для эпитермальных месторождений [28-31], также может быть реализована в природных процессах. Экспериментальные данные по взаимодействию золота с H_2 S-газом [32] показали его достаточно высокую растворимость (1 ppb при 300°C, 10-100 ppb при 400°C). Перенос золота, серебра и других рудных элементов в виде газовых частиц при температурах 500-800°C широко рассматривается во многих работах, появившихся в последнее десятилетие [33-39].

Заключение

Месторождение Юное относится к эпитермальным Au-Ag месторождениям, но не является типичным их представителем. Своеобразие его состоит в том, что рудная минерализация локализована не в линейных тектонических трещинах, а в некках риолитов, образующих трубчатые рудные тела. Привнос гидротерм (связанный с внедрением магматических тел), их взаимодействие с риолитами и мобилизация рудных компонентов, а также быстрое охлаждение рудоносного раствора в поверхностных условиях или при смешении с холодными метеорными водами, по-видимому, привели к образованию рудной минерализации, содержащей ютенбогаардтит, акантит и самородное золото. В соответствии с разработанными моделями «ступенчатого и быстрого охлаждения гидротермальных рудоносных растворов» можно прогнозировать отсутствие ютенбогаардтита и преобладание сульфида серебра и самородного золота или самородного золота на более глубоких горизонтах.

Значимость ютенбогаардтита среди полезных компонентов на месторождении Юное такова, что заставляет учитывать его при выделении минерального типа месторождения и разработке технологических схем обогащения и извлечения Au и Ag. Полученные результаты позволяют прогнозировать присутствие ютенбогаардтита и петровскаита в рудах некоторых других эпитермальных золото-серебряных месторождений.

Работа выполнена при финансовой поддержке РФФИ (грант N 08-05-00233a).

ЛИТЕРАТУРА:

- 1. Barton M. D., Kieft C., Burke E. A. J., Oen I. S. Uytenbogaardtite, a new silver-gold sulfide // Canadian Miner., 1978, V.16, P. 651—657.
- 2. Castor S.B., Sjoberg J.J. Uytenbogaardtite, Ag₃AuS₂, in the Bullford mining district, Nevada // Canadian Miner., 1993, V. 31, P. 89—98.
- 3. *Савва Н.Е.* Электрум-акантит-ютенбогаардтитовый минеральный тип золото-серебряного оруденения в трубчатых некках риолитов // Минералогия и генетические особенности месторождений золота и серебра. Магадан: СВКНИИ ДВО РАН, 1996. С. 66-81.
- 4. *Альшевский А.В.* Сульфидные минералы золота на Северо-Востоке России: нахождение, особенности состава и генезиса // Проблемы геологии и металлогении Северо-Востока Азии на рубеже тысячелетий. Т. 2. Металлогения. Магадан: СВКНИИ ДВО РАН, 2001. С. 135—138.
- 5. *Greffié C.*, *Bailly L. and Milési J.-P*. Supergene Alteration of Primary Ore Assemblages from Low-Sulfidation Au-Ag Epithermal Deposits at Pongkor, Indonesia, and Nazareño, Perú // Econ. Geology. 2002. V. 97. № 3. P. 561—571.
- 6. *Pal'yanova G.A.*, *Savva N.E.* Genesis of Au-Ag sulfides at the Ulakhan deposit (Russia) // Proceedings of the 12-th International Symposium on Water-Rock Interaction. Kunming, China, 2007. T.Bullen, Y.Wang (eds), V.1. P. 377-380.
- 7. *Пальянова Г.А.*, *Савва Н.Е.* Сульфиды золота и серебра: состав, минеральные ассоциации, условия образования // Химическая технология. 2007. № 9. Т.8. С. 411—421.
- 8. Савва Н.Е., Пальянова Г.А. Минеральные парагенезисы и морфологические особенности ютенбогаардтита месторождения Юное (Магаданская обл., Россия) // Тез. Федоровской сессии. С-Пб., 2008. С.305-307.
- 9. *Моисеенко В.Г.* Метаморфизм золота месторождений Приамурья. Хабаровск: ДВГИ СО АН СССР, 1965. 127 с.
- 10. Нестеренко Γ .В., Кузнецова А.П., Пальчик Н.А., Лаврентьев Ю.Г. Петровскаит AuAg(S,Se) новый селеносодержащий сульфид золота и серебра // 3BMO. 1984. № 5. С. 602—607.
- 11. *Некрасов И.Я.*, *Лунин С.Е.*, *Егорова Л.Н*. Рентгенографическое изучение соединений системы Au-Ag-S-Se // ДАН СССР. 1990. Т. 311. № 4. С. 943—946.
- 12. Warmada I. W., Lehmann B., Simandjuntak M. Polymetallic sulfides and sulfosalts of the Pongkor epithermal gold-silver deposit, West Java, Indonesia // Canadian Mineralogist. 2003. V. 41. № 1. P. 185—200.
 - 13. Barton P.B. The Ag-Au-S system // Econ. Geology. 1980. V. 75. P. 303—316.
 - 14. Савва Н.Е. Принцип эволюционной систематики минералов серебра. Магадан: СВНЦ ДВО РАН, 1995. 49 с.
- 15. Анисимова Г.С., Кондратьева Л.А., Лескова Н.В. Новые находки сульфидов золота и серебра в золоторудных месторождениях Восточной Якутии // VIII Международная конференция "Новые идеи в науках о Земле" (РГГРУ. 10-13 апреля 2007). Доклады. Т. 3. Москва, 2007. С. 19-21.
- 16. Гаськов И.В., Акимиев В.А., Ковалев К.Р., Сотников В.И. Золотосодержащие минеральные ассоциации месторождений медно-рудного профиля Алтае-Саянской складчатой области // Геол. и геоф.. 2006. Т. 47. № 9. С. 986—994.
- 17. Sheets R.W., Craig J.R., Bodnar R.J. Composition and iccurence of electrum at the Morning Star deposit, San Bernandino County, California[^] evidence for remobilization of gold and silver // Canadian Mineralogist, 1995, v. 33, p.137—151.
- 18. Савва Н.Е., Пальянова Г.А. Генезис сульфидов золота и серебра на месторождении Улахан (Северо-Восток России) // Геология и геофизика. 2007. Т.48. №10. С.1028—1042.
- 19. Marcoux E. Gold and volcanoes: epithermal gold deposits, a review // C.R.Acad.Sci. Ser.2. Fass.A. 1995. N9. P. 723—735.
- 20. Самусиков В.П., Некрасов И.Я., Лескова Н.В. Золото-серебряный сульфоселенид $(AgAu)_2(S,Se)$ из месторождения «Якутское» // ЗВМО. 2002. № 6. С. 61—64.

- 21. Пальянова Г.А., Колонин Г.Р. Геохимическая подвижность Au и Ag в условиях гидротермального переноса и отложения (Термодинамическое моделирование) // Геохимия. 2007. №8. С. 814—828.
- 22. Пальянова Г.А., Савва Н.Е. Генезис сульфидов золота и серебра на месторождении Юное (Магаданская обл., Россия) // Геология и геофизика. 2009. (в печати)
- 23. Shvarov Yu. V., Bastrakov E.N. HCh: a software package for geochemical equilibrium modelling. User's Guide. AGSO Record 1999/25. Canberra. 1999
- 24. *Helgeson H.C.* Mass transfer among minerals and hydrothermal solutions // Geochemistry of Hydrothermal Ore Deposits 1976. (2 edition). (H.L.Barnes ed.). John Wiley & Sons, N.-Y. P.568-610.
- 25. *Борисов М.В.* Геохимические и термодинамические модели жильного гидротермального рудообразования. М.: Научный мир, 2000. 360 с.
- 26. *Гричук Д.В.* Термодинамические модели субмаринных гидротермальных систем. М.: Научный мир, 2000. 304 с.
 - 27. Краткий справочник по геохимии. М.: Недра, 1977. 184 с.
- 28. *Drummond S.E.*, *Ohmoto H*. Chemical evolution and mineral deposition in boiling hydrothermal systems // Econ. Geol., 1985. V.89. P.126—147.
- 29. Spycher N.F., Reed M.H. Evolution of a broadlands-type epithermal ore fluid along alternative P-T paths: implications for the transport and deposition of base, precious and volatile metals // Econ. Geology. 1989. V. 84. P. 328—359.
- 30. *Thiersch P.C.*, Williams-Jones A. E., Clark J.R. Mineralization and ore controls of the Shasta Au-Ag deposit, Toodoggone River district, British Columbia // Mineralium Deposita. 1997. V.32. P.44—57.
- 31. *Nagaseki H. and Hayashi. K.-I.* Experimental study of the behavior of copper and zinc in a boiling hydrothermal system // Geology. 2008. V. 1, 36(1), P. 27—30.
- 32. Zezin D.Yu., Migdisov A.A., Williams-Jones A. E. The solubility of gold in hydrogen sulfide gas: an experimental study // Geochim. Cosmochim. Acta. 2007. V.71. P. 3070—3081.
- 33. Heinrich C.A., Guenther D., Audetat A., Ulrich T., Frischknecht R. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions // Geology. 1999. V. 27. N 8. P. 755—758.
- 34. *Taran Yu.A.*, *Bernard A.*, *Gavilanes J.C.*, *Africano F.* Native gold in mineral precipitates from high-temperature volcanic gases of Colima volcano, Mexico // Appl. Geochem. 2000. 15. P. 337—346.
- 35. Williams-Jones A. E., Heinrich C. A. 100th Anniversary Special Paper: Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits // Econ. Geol. 2005. V. 100. N7. P. 1287 1312.
- 36. Simon A.C., Pettke T., Candela P.A., Piccoli P.M., Heinrich C. Copper partitioning in a melt–vapor–brine–magnetite–pyrrhotite assemblage // Geochim. Cosmochim. Acta. 2006. V. 70. N 22. P. 5583—5600.
- 37. Simon A.C., Pettke T., Candela P.A., Piccoli P.M., Heinrich C. The partitioning behavior of silver in a vapor brine rhyolite melt assemblage // Geochim. Cosmochim. Acta. 2008. V.72. N6. P. 1638-1659.
- 38. Simon A.C., Pettke T., Candela P.A., Piccoli P.M., Heinrich C.A. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages // Geochim. Cosmochim. Acta. 2007. V. 71. N7. P. 1764—1782
- 39. *Pokrovski G.S., Borisova A.Yu., Harrichoury J.C.* The effect of sulfur on vapor–liquid fractionation of metals in hydrothermal systems // Earth and Planetary Science Letters. 2008. V. 266. N3-4. P. 345—362. 1999. № 6. P. 646—652.

ТОНКОДИСПЕРСНОЕ ЗОЛОТО В РУДАХ МЕСТОРОЖДЕНИЯ МАЛОМЫР И ВОЗМОЖНОСТЬ ЕГО ИЗВЛЕЧЕНИЯ

Ожогин Д.О. 1 , Дубинчук В.Т. 1 , Орлова Н.И. 1 , Ружицкий В.В. 1 , Власов Н.Г. 2

¹ ФГУП «ВИМС», г. Москва; ²ОАО "Покровский рудник", г. Благовещенск

Посвящается минералогу Лидии Павловне Викуловой

В Приамурье золотодобыча ведется уже не одну сотню лет, но официально она была зарегистрирована лишь в 1867 году и продолжается до настоящего времени. Доля рудного (коренного) золота составляла менее 6% от общей золотодобычи. Ситуация кардинально изменилась в начале XXI века, когда в эксплуатацию было введено Покровское месторождение. За неполные десять лет доля добычи коренного золота выросла в три раза и достигла практически 50% от общей массы добываемого в Приамурье золота. Начиная с 2003 года, прослеживается явное снижение добычи золота из россыпей. Дальнейшую золотодобычу в этом регионе связывают с интенсификацией разработки, главным образом, коренных золоторудных месторождений, общие запасы которых на сегодняшний день составляют первые сотни тонн, а прогнозные ресурсы достигают тысячи тонн.

Золоторудное месторождение Маломыр было выявлено в конце 1960-х. До 2000 года проводились поисково-оценочные работы на этом месторождении. В результате проведенных работ выявлены основные особенности геологического строения месторождения и установлена его принадлежность к золотосульфидной формации. Месторождение Маломыр находится на северо-востоке Амурского региона в Верхнеселемджинском золоторудном районе, в 80 км западнее районного центра Экимчан.