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As markets become increasingly globalized and �rms become
more multinational, corporate joint ventures are likely to yield
opportunities to quickly create economies of scale and critical
mass, and facilitate rational resource sharing. A major source of
gain from joint venture is from cost savings. However, it is often
observed that after a certain time of cooperation, some �rms may
gain su�cient skills and technology that they would do better by
breaking up from the joint venture. This is the well-known problem
of time inconsistency. In this paper, we consider a dynamic cost
saving joint venture which adopts the Shapley value as its pro�t
allocation scheme. A compensation mechanism distributing pay-
ments to participating �rms at each instant of time is devised to
ensure the realization of the Shapley value imputation throughout
the venture duration. Hence time-consistency will be attained, and
a dynamically stable joint venture can be formed.
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1. Introduction
With joint ventures becoming a powerful force shaping global corporate

strategy, partnerships between �rms have signi�cantly increased. D'Aspre-
mont and Jacquemin [6], Kamien et al [7] and Suzumura [11] have studied
cooperative R&D with spillovers in joint ventures under a static framework.
Cellini and Lambertini [4], [5] considered cooperative solutions to invest-
ment in product di�erentiation in a dynamic approach. Moreover, as
markets become increasingly globalized and �rms become more multina-
tional, corporate joint ventures are likely to yield opportunities to quickly
create economies of scale and critical mass, and facilitate rational resource
sharing (see [1]). A major source of gain from joint venture is from
cost savings. Cost saving opportunities are created under joint venture,
for instance, savings in joint R&D, administration, marketing, customer
services, purchasing, �nancing, and economy of scales and scope. Despite
their purported bene�ts, however, joint ventures are highly unstable and
have a consistently high rate of failure ([3], [8]). After a certain time of
cooperation, some �rms may gain su�cient managerial and technological
expertise that they would do better by breaking away from the joint
venture. Thus a major source of instability is the lack of dynamical
stable or time consistent cooperative solutions to the joint-venture. Time
consistency is a fundamental element in dynamic cooperation, and it
ensures that: (i) the extension of the solution policy to a later starting
time and a state brought about by prior optimal behavior of the players
would remain optimal, and (ii) all participating �rms do not have incentive
to deviate from the initial plan (see [12], [13]). Petrosyan and Zaccour
[9] provided a time consistent solution to a class of di�erential games
involving pollution cost reduction. Yeung and Petrosyan [14] presented a
dynamically stable joint venture involving cooperative R&D with spillovers.
Yeung and Petrosyan [15] developed a cooperative di�erential game of
transboundary industrial pollution and derived a dynamically stable so-
lution.

In this paper, we consider a joint venture which results in cost saving.
The Shapley value [10] is adopted to be the pro�t allocation scheme
to re�ect the relative contributions of the �rms in cost saving. Since
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joint venture is a continual arrangement, a dynamic speci�cation of the
Shapley value is provided. To ful�ll time-consistency, the Shapley value
imputation has to be throughout the venture duration. A compensation
mechanism distributing payments to participating �rms at each instant of
time ensuring the realization of the Shapley value imputation throughout
the venture duration is devised.

2. Dynamic cost saving joint ventures
Consider a framework of a dynamic joint venture in which there are

n �rms. The venture horizon is [t0, T ]. The objective of �rm i is:
∫ T

t0

{
gi[s, xi(s)]− c

{i}
i [ui(s)]

}
exp

[
−

∫ S

t0

r(y)dy

]
ds

+ exp

[
−

∫ T

t0

r(y)dy

]
qi(xi(T )), for i ∈ [1, 2, · · · , n]≡N, (2.1)

where xi(s) ∈ X i ⊂ Rmi+ denotes the state variables of �rm i, ui ∈
Ui ⊂ Rli+ is the control vector of �rm i, gi[s, xi(s)] the instantaneous
revenue, c

{i}
i [ui(s)] represents the costs of the �rms control ui(s) when

it is operating on its own, exp
[
− ∫ t

t0
r(y)dy

]
is the discount factor, and

qi(xi(T )) the terminal payment. In particular, the �rm's revenue gi[s, xi]

is a�ected by the state variables like capital stock, special skills, productive
resources and technologies.

The state dynamics of the ith �rm is characterized by the set of
vector-valued di�erential equations:

ẋi(s) = f i[s, xi(s), ui(s)], xi(t0) = xi(0), for i ∈ N. (2.2)

Consider a joint venture consisting of a subset of �rms K ⊆ N . There
are k �rms in the subset K. The participating �rms can obtain cost
reduction and the pro�t to the joint venture K at time t0 becomes:

∫ T

t0

∑
j∈K

{
gj[s, xj(s)]− cK

j [uj(s)]
}

exp

[
−

∫ S

t0

r(y)dy

]
ds

+
∑
j∈K

exp

[
−

∫ T

t0

r(y)dy

]
qj(xj(T )), for K ⊆ N, (2.3)

where cK
j [uj(s)] represents the costs of the controls of the �rm j in the

subset K. Cost saving opportunities are created under joint venture,
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for instance, savings in joint R&D, administration, marketing, customer
services, purchasing, �nancing, and economy of scales and scope. With
absolute joint venture cost advantage we have

cK
j [uj(s)] ≤ cL

j [uj(s)], for j ∈ L ⊆ K, (2.4)

Moreover, marginal cost advantages lead to:

∂cK
j [uj(s)]/∂uj(s) ≤ ∂cL

j [uj(s)]/∂uj(s), for j ∈ L ⊆ K.

The model adopted for analysis concentrates on cost savings and the
pro�t of an outside �rm is not a�ected by the actions of the joint venture.
Let xK denote the concatenation of all xj for j ∈ K. To compute the
pro�t of the joint venture K we have to consider the optimal control
problem $[K; t0, x

K(0)] which maximizes (2.3) subject to (2.2). Using
Bellman's [2] technique of dynamic programming the solution of the
problem $[K; t0, x

K(0)] can be characterized as follows.

De�nition 2.1. A set of controls
{

u∗j(t) = ψ
(t0)K∗
j (t, xK), j ∈ K

}
provides

an optimal solution to the problem $[K; t0, x
K(0)] if there exist continuously

di�erentiable function

W (t0)K(t, xK) : [t0, T ]×
∏
j∈K

Rmj → R,

satisfying the Bellman equation:

−W
(t0)K
t (t, xK) = max

uK

{∑
j∈K

{
gj[s, xj(s)]− cK

j [uj(s)]
}

exp

[
−

∫ t

t0

r(y)dy

]

+
∑
j∈K

W (t0)K
xj

(t, xK)f j[t, xj, uj]

}
,

W (t0)K(T, xK) = exp

[
−

∫ T

t0

r(y)dy

] ∑
j∈K

qj(xj).

In the case when all the n �rms are in the joint venture, the set of
optimal controls

{
ψ

(t0)N∗
j (s, xN(s)), for j ∈ N

}
, will be adopted and the

dynamics of the optimal state trajectory of the grand coalition can be
expressed as:

ẋj(s) = f j[s, xj(s), ψ
(t0)N∗
j (s, x(s))], xj(t0) = x0

j , for j ∈ N. (2.5)



Cost-saving joint ventures 141

Let x∗(t) =
{
x1∗(t), x2∗(t), · · · , xn∗(t)

}
for t ∈ [t0, T ] denote the

solution to (2.5) which yields the optimal trajectories. In particular

xj∗(t)=xj(0)+

∫ t

t0

f j[s, xj∗(s), ψ
(t0)N∗
j (s, x∗j(s))]ds, for j =1, 2, . . . , n. (2.6)

We use xj∗
t to denote the value of xj∗(t) at time t ∈ [t0, T ], and xL∗

t to
denote the vector containing all xj∗

t , for j ∈ L ⊆ N . The pro�t of the
grand coalition joint venture becomes

W (t0)N(t0, x
N(0)) =

∫ T

t0

n∑
j=1

{
gj[s, xj∗(s)]− cN

j [ψ
(t0)N∗
j (s, x∗j(s))]

}
exp

[
−

∫ S

t0

r(y)dy

]
ds

+
n∑

j=1

exp

[
−

∫ T

t0

r(y)dy

]
qj(xj∗(T )).

A remark which will be used in subsequent analysis is provided below.

Remark 2.1. Consider the problem $[K; τ, xK ] which starts at time τ ∈
[t0, T ] with initial state xK

τ which maximizes
∫ T

τ

∑
j∈K

{
gj[s, xj(s)]− cK

j [uj(s)]
}

exp

[
−

∫ S

τ

r(y)dy

]
ds

+
∑
j∈K

exp

[
−

∫ T

τ

r(y)dy

]
qj(xj(T ))

subject to

ẋj(s) = f j[s, xj(s), uj(s), xj(τ) = xj, for j ∈ K.

One can readily show that:

exp

[∫ t

τ

r(y)dy

]
W (τ)K(t, xK

t ) = W (t)K(t, xK
t ), for t0 ≤ τ ≤ t ≤ T ;

and
Ψ

(τ)K∗
j (t, xK

t ) = Ψ
(t)K∗
j (t, xK

t ), for t0 ≤ τ ≤ t ≤ T and j ∈ K.

Since pro�t maximization by coalition K is not a�ected by actions of
�rms outside the coalition, the following superaddivity property can be
obtained.
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Proposition 2.1. Coalition pro�ts are superadditivity, that is

W (τ)K(τ, xK
τ ) ≥ W (τ)L(τ, xL

τ ) + W (τ)K\L(τ, xK\L
τ ), for L ⊂ K ⊆ N,

where K \ L is the relative complement of L in K.

Proof. See Appendix.

3. Dynamic Shapley value imputation
The problem of sharing the cooperative gains is inescapable in virtually

every joint venture. The Shapley value is one of the most commonly used
sharing mechanism in static cooperation games with transferable payo�s.
Besides being individually rational and group rational, the Shapley value
is also unique. Speci�cally, the Shapley value gives an imputation rule:

ϕi(v) =
∑
K⊆N

(k − 1)!(n− k)!

n!
[v(K)− v(K \ i)], for i ∈ N, (3.1)

where K \ i is the relative complement of i in K, v(K) is the pro�t of
coalition K, and [v(K)− v(K \ i)] is the marginal contribution of �rm i

to the coalition K.
In the present dynamic analysis instead of a one-time allocation of

the Shapley value, we have to consider the maintenance of the Shapley
value imputation over the joint venture horizon.

Again, since pro�t maximization by coalition K is not a�ected by
�rms outside the coalition, the function v(K) can be regarded as a
characteristic function.

At time t0 with state xN(0), the �rms agree that �rm i's share of
pro�ts be:

ξ(t0)i(t0, x
N(0)) =

∑
K⊆N

(k − 1)!(n− k)!

n!

[
W (t0)K(t0, x

K(0))−W (t0)K\i(t0, xK\i(0))
]
,

for i ∈ N, (3.2)

However, the Shapley value has to be maintained throughout the
venture horizon [t0, T ] to ensure time consistency. In particular, at time
τ with the state being x∗τ the following imputation principle has to be
maintained:
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Condition 3.1. At time τ , �rm i's share of pro�ts is:

ξ(τ)i(τ, x∗τ)=
∑
K⊆N

(k − 1)!(n− k)!

n!

[
W (τ)K(τ, xK∗

τ )−W (τ)K\i(τ, xK\i∗
τ )

]
,

for i ∈ N and τ ∈ [t0, T ]. (3.3)

Note that ξ(τ)(τ, x∗τ ) =
[
ξ(τ)1(τ, x∗τ ), ξ

(τ)2(τ, x∗τ ), · · · , ξ(τ)n(τ, x∗τ )
]
as

speci�ed in (3.3) satis�es the basic properties of an imputation vector:

(i)
n∑

j=1

ξ(τ)j(τ, x∗τ ) = W (τ)N(τ, x∗τ ), and

(ii) ξ(τ)i(τ, x∗τ ) ≥ W (τ)i(τ, x∗τ ), for i ∈ N and τ ∈ [t0, T ]. (3.4)

Part (i) of (3.4) shows that ξ(τ)(τ, x∗τ ) satis�es the property of Pareto
optimality throughout the game interval. Part (ii) demonstrates that
ξ(τ)(τ, x∗τ ) guarantees individual rationality throughout the game interval.
Crucial to the analysis is the formulation of a pro�t distribution mechanism
that would lead to the realization of Condition 3.1. This will be done in
the next section.

4. Transitory compensation to secure the Shapley value
imputation

In this section, a pro�t distribution mechanism will be developed to
compensate transitory changes so that the Shapley value principle could
be maintained throughout the venture horizon. First, an imputation
distribution procedure (similar to those in [9], [12], [13]) must be now
formulated so that the imputation scheme in Condition 3.1 can be realized.
Let the Bτ

i (s) denote the payment received by �rm i ∈ N at time
τ ∈ [t0, T ] dictated by ξ(τ)(τ, x∗τ ). In particular,

ξ(τ)i(τ, x∗τ ) =
∑
K⊆N

(k − 1)!(n− k)!

n!

[
W (τ)K(τ, x∗τ )−W (τ)K\i(τ, x∗τ )

]
=

=

∫ T

τ

Bτ
i (s) exp

[
−

∫ S

τ

r(y)dy

]
ds + qi(xi∗(T )) exp

[
−

∫ T

τ

r(y)dy

]
,

for i ∈ N and τ ∈ [t0, T ]. (4.1)
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Moreover, for i ∈ N and t ∈ [τ, T ], we use

ξ(τ)i(t, x∗t ) =∫ T

t

Bτ
i (s) exp

[
−

∫ S

τ

r(y)dy

]
ds + qi(xi∗(T )) exp

[
−

∫ T

τ

r(y)dy

]
, (4.2)

to denote the present value of player i's cooperative pro�t according to
ξ(τ)(τ, x∗τ ) over the time interval [t, T ], given that the state is x∗τ at time
t ∈ [τ, T ].

A necessary condition for ξ(τ)i(t, x∗t ) to follow Condition 3.1 is that:

ξ(τ)i(t, x∗t ) = ξ(t)i(t, x∗t ) exp

[
−

∫ t

τ

r(y)dy

]
,

for i ∈ N, t ∈ [τ, T ] and τ ∈ [t0, T ]. (4.3)

A candidate of ξ(τ)i(t, x∗t ) satisfying (4.1)�(4.3) has to be found. A
natural choice is

ξ(τ)i(t, x∗t)=
∑
K⊆N

(k − 1)!(n− k)!

n!

[
W (τ)K(t, xK∗

t )−W (τ)K\i(t, xK\i∗
t )

]
(4.4)

With Remark 2.1, one can readily that ξ(τ)i(t, x∗t ) as de�ned in (4.4)
satis�es (4.1)�(4.3).

For (4.1)�(4.4) to hold, Bτ
i (s) has to be equal to Bt

i(s), for i ∈ N and
τ 6= t. Therefore we adopt the notation Bτ

i (s) = Bt
i(s) = Bi(s). To ful�ll

the Pareto optimality property, the imputation vector ξ(τ)(t, x∗t ) has to
satisfy the following condition.

Condition 4.1.
n∑

j=1

Bi(s) =
n∑

j=1

gj[s, x∗j , ψ
(τ)N∗
j (s, x∗s)], for s ∈ [τ, T ] and τ ∈ [t0, T ].

If there exist twice continuously di�erentiable value functions
W (τ)K(t, xK∗

t ), for all K ⊆ N , the term ξ(τ)i(t, x∗t ) is twice continuously
di�erentiable in t and x∗t .

Given the di�erentiability property of ξ(τ)i(t, x∗t ), for ∆t → 0 one can
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use (4.3) to obtain:

ξ(τ)i(τ, x∗τ ) =

∫ τ+∆t

τ

Bi(s) exp

[
−

∫ S

τ

r(y)dy

]
ds +

exp

[
−

∫ τ+∆t

τ

r(y)dy

]
ξ(τ+∆t)i(τ + ∆t, x∗τ + ∆x∗τ )

∣∣∣∣ x(τ) = x∗τ ,

for i ∈ N, t ∈ [τ, T ] and τ ∈ [t0, T ]. (4.5)
where
∆x∗τ =

[
∆x1∗

τ , ∆x2∗
τ , · · · , ∆xn∗

τ

]
,

∆xj∗
τ = f j

[
τ, xj∗

τ , ψ
(τ)N∗
j (τ, x∗τ )

]
∆t + o(∆t), for j ∈ N,

and [o(∆t)]/∆t → 0 as ∆t → 0.

Using (4.3), (4.4) and (4.5), one can obtain

Bi(τ)=−
[
ξ

(τ)i
t (t, x∗t ) |t=τ

]
−

n∑
j=1

[
ξ

(τ)i

xt∗
j

(t, x∗t ) |t=τ

]
f j

[
τ, xj∗

τ , ψ
(τ)N∗
j (τ, x∗τ )

]
,

for i ∈ N, t ∈ [τ, T ] τ ∈ [t0, T ]. (4.6)

Using (4.4) and (4.6), we obtain:
Since the partial derivative of W (τ)K(τ, xK∗

τ ) with respect to xj, for j 6∈
K, will vanish, a theorem characterizing the payo� distribution procedure
leading to the realization of Condition 3.1 can be obtained as:

Òåîðåìà 4.1. A payment to player i ∈ N at time τ ∈ [t0, T ] leading to
the realization of the Condition 3.1 can be expressed as:

Bi(τ) = −
∑
K⊆N

(k − 1)!(n− k)!

n!

{[
W

(τ)K
t (t, xK∗

t ) |t=τ

]
−

[
W

(τ)K\i
t (t, x

K\i∗
t ) |t=τ

]
+

∑
j∈K

[
W

(τ)K

xj∗
t

(t, xK∗
t ) |t=τ

]
f j

[
τ, xj∗

τ , ψ
(τ)N∗
j (τ, x∗τ )

]

−
∑
j∈K

[
W

(τ)K\i
xj∗

t

(t, x
K\i∗
t ) |t=τ

]
fK\i

[
τ, xK\i∗

τ , ψ
(τ)N∗
j (τ, x∗τ )

]}

The vector B(τ) serves as a form equilibrating transitory compensation
that guarantees the realization of the Shapley value imputation throughout
the game horizon. Note that the instantaneous pro�t Bi(τ) o�ered to
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player i at time τ is conditional upon the current state x∗τ and current
time τ . One can elect to express Bi(τ) as Bi(τ, x

∗
τ ). Hence an instantaneous

payment Bi(τ, x
∗
τ ) to player i ∈ N yields a dynamically stable solution

to the joint venture.

5. Concluding remarks
Despite all their purported bene�ts, joint ventures are highly unstable

because of the lack of dynamical stable pro�t sharing schemes. In this
paper, we consider a cost saving dynamic joint venture which adopts the
Shapley value as its pro�t allocation scheme. A compensation mechanism
distributing payments to participating �rms at each instant of time is
devised to ensure the realization of the Shapley value imputation throug-
hout the venture duration. Hence time-consistency will be attained, and a
dynamically stable joint venture can result. Finally, this paper concentrates
on the establishment of dynamically stable cost saving joint ventures.
Further study on joint ventures which requires particular information on
the demand structures, is left to the readers.

Appendix: Proof of Proposition 2.1.
Let x̂j(L) for j ∈ L denote the optimal trajectory of the optimal

control problem $[L; τ, xL
τ ] which maximizes

∫ T

t

∑
j∈L

{
gj[s, xj(s)]− cL

j [uj(s)]
}

exp

[
−

∫ S

τ

r(y)dy

]
ds

+
∑
j∈L

exp

[
−

∫ T

t0

r(y)dy

]
qj(xj(T ))

subject to ẋj(s) = f j[s, xj(s), uj(s)], xj(τ) = xj
τ , for j ∈ L.

Note that

W (τ)L(τ, xL
τ ) =∫ T

τ

∑
j∈L

{
gj[s, x̂j(L)(s)]−cL

j [ψ
(τ)L∗
j (s, x̂L(L)(s))]

}
exp

[
−

∫ S

τ

r(y)dy

]
ds

+
∑
j∈L

exp

[
−

∫ T

τ

r(y)dy

]
qj(x̂j(L)(T ))
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≤
∫ T

τ

∑
j∈L

{
gj[s, x̂j(L)(s)]−cK

j [ψ
(τ)L∗
j (s, x̂L(L)(s))]

}
exp

[
−

∫ S

τ

r(y)dy

]
ds

+
∑
j∈L

exp

[
−

∫ T

τ

r(y)dy

]
qj(x̂j(L)(T )),

because cK
j [uj(s)] ≤ cL

j [uj(s)], for j ∈ L ⊆ K. (A.1)

Applying the above analysis to the optimal control problem $[K \
L; τ, x

K\L
τ ], we have

W (τ)K\L(τ, xK\L
τ )

=

∫ T

τ

∑

j∈K\L

{
gj[s, x̂j(K\L)(s)]− c

K\L
j [ψ

(τ)K\L∗
j (s, x̂K\L(K\L)(s))]

}

× exp

[
−

∫ S

τ

r(y)dy

]
ds +

∑

j∈K\L
exp

[
−

∫ T

τ

r(y)dy

]
qj(x̂j(K\L)(T ))

≤
∫ T

τ

∑

j∈K\L

{
gj[s, x̂j(K\L)(s)]− cK

j [ψ
(τ)K\L∗
j (s, x̂K\L(K\L)(s))]

}

× exp

[
−

∫ S

τ

r(y)dy

]
ds +

∑

j∈K\L
exp

[
−

∫ T

τ

r(y)dy

]
qj(x̂j(K\L)(T )),

because cK
j [uj(s)] ≤ c

K\L
j [uj(s)], for j ∈ K \ L ⊆ K. (A.2)

Now consider the optimal control problem $[K; τ, xK
τ ] which maximizes

∫ T

τ

∑
j∈K

{
gj[s, xj(s)]− cK

j [uj(s)]
}

exp

[
−

∫ S

τ

r(y)dy

]
ds

+
∑
j∈K

exp

[
−

∫ T

t0

r(y)dy

]
qj(xj(T ))

subject to ẋj(s) = f j[s, xj(s), uj(s)], xj(τ) = xj
τ , for j ∈ K.

Since ψ
(τ)K∗
j (s, x̂K(K)(s)) and x̂K(K)(s) are respectively the optimal
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control and optimal state trajectory of the problem $[K; τ, xK
τ ],

W (τ)K(τ, xK
τ )

=

∫ T

τ

∑
j∈K

{
gj[s, x̂j(K)(s)]−cK

j [ψ
(τ)K∗
j (s, x̂K(K)(s))]

}
exp

[
−

∫ S

τ

r(y)dy

]
ds

+
∑
j∈K

exp

[
−

∫ T

τ

r(y)dy

]
qj(x̂j(K)(T ))

≥
∫ T

τ

∑
j∈L

{
gj[s, x̂j(L)(s)]−cK

j [ψ
(τ)L∗
j (s, x̂L(L)(s))]

}
exp

[
−

∫ S

τ

r(y)dy

]
ds

+
∑
j∈L

exp

[
−

∫ T

τ

r(y)dy

]
qj(x̂j(L)(T ))

+

∫ T

τ

∑

j∈K\L

{
gj[s, x̂j(K\L)(s)]− cK

j [ψ
(τ)K\L∗
j (s, x̂K\L(K\L)(s))]

}

× exp

[
−

∫ S

τ

r(y)dy

]
ds +

∑

j∈K\L
exp

[
−

∫ T

τ

r(y)dy

]
qj(x̂j(K\L)(T )). (A.3)

Invoking (A.1), (A.2) and (A.3), we can readily obtain

W (τ)K(τ, xK
τ ) ≥ W (τ)L(τ, xL

τ ) + W (τ)K\L(τ, xK\L
τ ).

Hence Proposition 2.1 follows.
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