- 1. Хромитовые руды в пределах ГХГ различны по текстурно-структурным особенностям, составу, характеру срастаний, размерам минеральных выделений и контрастности свойств.2. В рудах хромит представлен неравномерной вкрапленностью (зерна от ультрамикроскопических до размеров в несколько миллиметров), по морфологии встречаются идиоморфные и ксеноморфные зерна в серпентине, пироксене, оливине. Выделены три генерации хромита и сложные срастания, как с рудными, так и с нерудными минералами, что требует тонкого измельчения (до -0,2 мм) для получения концентратов, отвечающих требованиям промышленности.
- 3. Присутствие минералов с низкой твердостью (серпентин, ортопироксен) определяет появление шламов породообразующих минералов таких, как тонкие зерна и пластинки ортопироксена и в особенности серпентина, существенно усложняющие процессы обогащения хромитовых руд.
- 4. В соответствии с размерами (0,03-0,05 мм и менее) первой генерации хромита и её содержанием, теоретически предсказуем не только низкий уровень раскрытия хромита, но и сложность извлечения в процессах обогащения.
- 5. Технолого-минералогическое изучения руд позволяет наметить крупность дробления и процессы измельчения, выявить закономерности раскрытия хромита, поведения и прироста полезного минерала от времени измельчения (рис. 1) установить долю ошламования хромита путем сравнения вновь образованного класса —0,05мм и в исходной руде. Полученные данные являются основанием для разработки схемы рудоподготовительных операций хромитовых руд ГХГ Карелии.

ЛИТЕРАТУРА

- 1. Barsky L.A.,? Kevlich V.I. Estimating the amenability of Karelia's chromite ores to benefication of monomineral fractions // Geological-Technological of ore minarels, samples and deposits. Leningrad, 1990. P. 81-84.
- 2. *Кевлич В.И., Светов С.А., Фофанов А.Д.* Типоморфные особенности хромита и влияние их на выбор и условия направленного изменения свойств // Направленное изменение физико-химических свойств минералов в процессах обогащения полезных ископаемых (Плаксинские чтения), Материалы международного совещания. М.: Альтекс, 2003. С. 145.
- 3. *Лавров М.М., Кевлич В.И.* О происхождении хромитового оруденения Бураковской интрузии. Оперативно информационные материалы. Петрозаводск, 1986. С. 40-43
 - 4. Металлогения Карелии / Отв. Ред. С.И. Рыбаков, А.И. Голубев. Петрозаводск, 1999. С. 223-230.
 - 5. Поиски, разведка и оценка хромитовых месторождений. М.: Недра, 1987. С. 148-157.
- 6. Трофимов Н.Н., Лавров М.М., Логинов В.Н., Никитин А.Н., Инина И.С. Латеральная и вертикальная изменчивость состава хромшпинелидов Бураковской расслоенной интрузии //Минералогия магматических и метаморических пород докембрия Карелии. Петрозаводск, 1994. С. 41-52.
- 7. Щипцов В.В. Технологическая минералогия при оценке индустриальных минералов Карелии // Результаты фундаментальных и прикладных исследований по разработке методик технологической оценки руд металлов и промышленных минералов на ранних стадиях геологоразведочных работ: сб. статей по матер. 1 Рос. семинара по технологической минералогии. Петрозаводск: КарНЦ РАН, 2006. С. 26-33.
- 8. *Чантурия В.А.* Современные проблемы обогащения минерального сырья в России // Электронный научно-информационный журнал. Вестник ОГГГГН РАН № 4(6) 98. М., 1998. С. 39-55.

РАЗРАБОТКА ТЕХНОЛОГИИ ПО ПЕРЕРАБОТКЕ СТАБИЛИЗИРОВАННОГО ШЛАКА НИЗКОУГЛЕРОДИСТОГО ФЕРРОХРОМА ОАО «ЧЭМК» С УЧЕТОМ ЕГО МИНЕРАЛОГО-ПЕТРОГРАФИЧЕСКИХ ОСОБЕННОСТЕЙ

Таранина Т.И. 1 , Кабанова Л.Я. 1 , Королев А.С. 1 , Зырянов Φ .А. 1 , Ракитин Д.И. 2

¹ Южно-Уральский государственный университет, Челябинск, taranina-ti@mail.ru ²OAO «Челябинский электро-металлургический комбинат», Челябинск

При производстве низкоуглеродистого феррохрома на OAO «Челябинский электрометаллургический комбинат» образуется до 120 тыс.т/год шлака. Данный материал представлен в виде тонкодисперсного порошка светло-серого цвета, по минералогическому и химическому составу близок к клинкеру портландцемента, но не обладает вяжущими свойствами. В условиях медленного остывания и кристаллизации расплава формируется двухкальциевый силикат — $2CaOxSiO_2$, имеющий три полиморфные модификации. При обычных условиях охлаждения расплава двухкальциевый силикат переходит в γ -форму с увеличением в объеме, что приводит к саморазрушению кристаллической решетки и переходу шлака в пылевидное состояние. Из-за высокой дисперсности, обусловленной полиморфными превращениями, данный шлак получил название «самораспадающийся». Он практически не обладает гидравлической активностью.

Для обеспечения стабилизации структуры двухкальциевого силиката — $2CaOxSiO_2$, в частности минерала белита, присутствующего в шлаке, необходимо быстрое охлаждение расплава или введение

стабилизаторов в виде оксидов бора, хрома, фосфора [1]. Одним из путей решения этой задачи является проведение термодинамически-диаграммного анализа пятикомпонентной системы $CaO-SiO_2-Al_2O_3-MgO-Cr_2O_3$ и установление областей фазовых составов шлаковых расплавов, обладающих необходимыми физико-химическими свойствами огнеупорного сырья и обеспечивающих высокие технологические показатели процесса выплавки низкоуглеродистого феррохрома. В целом внедрение новых способов переработки шлаков, обеспечивающих получение шлаковых материалов с высокими потребительскими свойствами, и повышение степени извлечения металла позволит решить ряд проблем, существующих на предприятии. Более эффективно будет использоваться исходное рудное сырье, увеличится уровень безотходности его переработки, а утилизация отхода - стабилизированного шлака, в строительной индустрии позволит улучшить экологическую обстановку в районах расположения предприятий, в т.ч. предотвратить загрязнение почвы хромом, и, наконец, получить значительную экономию цемента.

В связи с вышеперечисленным в 2008-09 гг. ОАО «ЧЭМК» были проведены испытания по внедрению в цехе №9 технологии стабилизации шлака низкоуглеродистого феррохрома. Данная технология заключается в том, что при сливе шлака в ковш шлаковоза предварительно подается борный ангидрид — B_2O_3 , выполняющий роль стабилизатора, в количестве 0,5% от массы шлака. После слива и выдержки расплава при температуре 1700-1800°С стабилизатор диффузионно распределяется в шлаке и при последующем остывании обеспечивает предотвращение самораспада и сохранение шлака в виде слитка. В последующем слиток выгружается из шлаковоза и дробится. В результате обеспечивается минимальное содержание остаточного металла (до 1%) в шлаке с получением кускового шлака фракций 0-3 мм, 3-8 мм и 8-20 мм в общем объеме до 40 тыс.т/мес.

С целью разработки технологий по утилизации стабилизированного шлака низкоуглеродистого феррохрома были изучены его химический и минеральный состав, строение и свойства.

Химический состав стабилизированного шлака отличается преобладанием оксидов кальция (35-40%), кремния (25-0%), магния (15-20%) и алюминия (5-14%) в таком соотношении, при котором из расплава кристаллизуются простые и сложные силикаты и алюмосиликаты кальция и магния, а также сложный оксид металлов – шпинель (табл. 1).

Группа	Подгруппа	Вид минерала и формула	Структурная формула
Простые силикаты	Силикаты кальция	Ларнит (белит), 2 CaOxSiO ₂ Волластонит, Ca [SiO ₃]	$\begin{array}{c} Ca_2 \left[SiO_4 \right] \\ Ca_3 \left[Si_3O_9 \right] \end{array}$
	Силикаты магния	Энстатит, MgOxSiO ₂ Клиноэнстатит	$\mathrm{Mg_2}\left[\mathrm{Si_2O_6}\right]$
Сложные силикаты	Алюмосиликаты системы CaO-Al2O3-SiO2	Геленит (мелилит), 2CaO—Al ₂ O ₃ —SiO ₂ Хромдиопсид, CaO - MgO - 2SiO ₂	Ca ₂ Al [(Si, Al) ₂ O ₇] CaMg[Si ₂ O ₆]
Сложные оксиды металлов	Шпинелей	Шпинель, Mg Al $_2$ O $_4$, хромсодержащая	

Таблица 1. Минералы стабилизированного шлака низкоуглеродистого феррохрома

Петрографические исследования образцов (из 4 плавок 30 шлифов) стабилизированного шлака показали, что он имеет плотно-пористое строение с размером от 0,1-1 мм округлых пор до видимых глазом пузырей — 10-15 мм, различной формы. Микроструктура шлака напоминает порфировидное строение: относительно идиоморфные более крупные — от 0,2-0,7 мм, в редких случаях до 1,0-1,5 мм, кристаллы минералов погружены в менее раскристаллизованную, скрытозернистую — 0,05-0,1 мм, массу этих же минералов. В отдельных шлифах наблюдалась определенная ориентировка кристаллов, хотя преобладают разно ориентированные тесно переплетающиеся и сменяющие друг друга индивиды и агрегаты (рис. 1).

Все перечисленные минералы (табл. 1) за исключением шпинели бесцветные, имеют высокие показатели преломления и высокий рельеф и отличаются друг от друга, прежде всего, по морфологии и силе двупреломления.

Вероятно, первым из расплава кристаллизовался энстатит, имеющий относительно идиморфные вытянутые, часто удлиненно-призматические и даже шестоватые формы зерен длиной до 1,2-1,5 мм и шириной 0,2-0,4 мм. Многие зерна энстатита представлены полисинтетическими двойниками. Обладая ромбической сингонией, энстатит имеет прямое погасание и слабое двупреломление (N_g – N_p = 0,008) с серыми до бледножелтых цветами интерференции. Энстатит при понижении температуры замещается клиноэнстатитом. Он присутствует в виде отдельных зерен, и, обладая моноклинной сингонией, имеет косой угол погасания – $22...42^\circ$.

Обеднение расплава магнием приводило к кристаллизации ларнита, который часто находится в тесных срастаниях с энстатитом. Зерна ларнита отличаются округло-овальной формой с характерной штриховкой, обусловленной наличием полисинтетических двойников, которые напоминают в шлифах двойники плагиоклазов. Обладая моноклинной сингонией, ларнит имеет также косое погасание — $12-22^{\circ}$, и средние — серые до красно-оранжевых цвета интерференции ($N_g-N_p=0.018$).

По морфологии и сильно развитой трещиноватости хорошо выделяется в шлифах геленит (мелилит), кристаллизация которого происходила одновременно с ларнитом. Обладая тетрагональной сингонией, мелилит

наблюдается в виде короткопризматических и тонкотаблитчатых кристаллов, имеющих в разрезе изометричную форму. При слабом двупреломлении (N_o - N_e =0,001...0,013) геленита иногда встречаются зональные зерна с аномальными серо-синими цветами интерференции. Именно в трещинах геленита содержатся включения стекла и рудных минералов (ильменита и хромита). В одном шлифе вокруг кристаллов мелилита наблюдается нарастание волластонитовой каймы из игольчатых кристаллов. Здесь же встречались скопления мелких зерен диопсида темно-зеленого цвета.

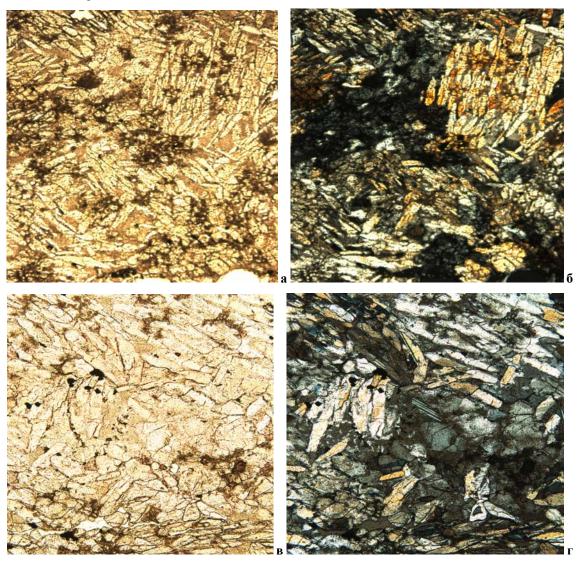


Рис. 1. Микроструктура стабилизированного шлака. Тесно переплетающиеся шестоватые индивиды энстатита, овальные - ларнита, таблитчатые — мелилита и шпинели. Свет проходящий, а - без анализатора, ув.50, б – с включенным анализатором, ув.50., в - без анализатора, ув.100, г – с включенным анализатором, ув.100

Во всех шлифах присутствуют и бросаются в глаза кристаллы с самым высоким рельефом хромсодержащей шпинели, обладающей бледно-сиреневато-розовым, иногда ярко красным цветом и присутствующей в двух генерациях. Обладая кубической сингонией, шпинель І-ой генерации встречается в виде идиоморфных кристаллов размером до 0,06...0,07 мм (Рис. 2). Шпинель ІІ-ой генерации отличается бледно-розовой окраской и неправильной формой мелких (0,01...0,03 мм) зерен, которые образуют скопления размером до 0,2...0,5 мм в виде цепочек между зерен ларнита и мелилита или по трещинкам, развитым в этих минералах. В отдельных шлифах и на отдельных участках шлака содержание шпинели, особенно ІІ генерации, которая как бы цементирует силикаты, достигает 30...50%, за счет чего макроскопически серый шлак приобретает розоватый оттенок. В целом, содержание шпинели в шлаке не превышает обычно 5...15%.

Наряду с минералого-петрографическими были выполнены рентгеноструктурные исследования, показавшие, что стабилизированный шлак низкоуглеродистого феррохрома не содержит свободных оксидов кальция или магния, которые ограничивают его использование в качестве сырья для стройматериалов. В шлаке преобладают примерно в равных соотношениях минералы класса силикаты и алюмосиликаты кальция и магния, поликомпонентный твердый раствор которых на основе ларнита в технике получил название белита [2].

Поэтому в тонкомолотом состоянии стабилизированный шлак подобного минерального состава должен обладать гидравлическими вяжущими свойствами.

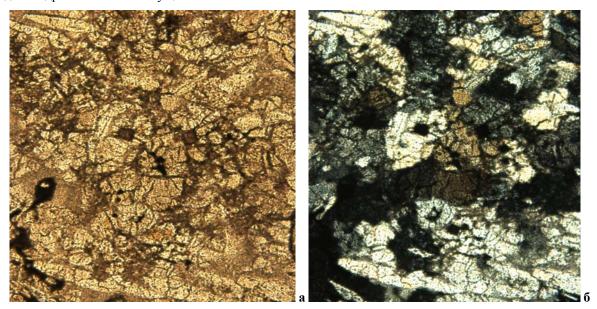


Рис. 2. Микроструктура стабилизированного шлака. Хорошо видны идиоморфные кристаллы шпинели I-ой генерации и скопления мелких зерен шпинели II-ой генерации. Свет проходящий, а - без анализатора, б – с включенным анализатором, ув.100

В связи с этим была исследована прочность бетонов класса В15, изготовленных из бетонных смесей на чистом портландцементе и на смешанном вяжущем из портландцемента и молотого стабилизированного шлака в соотношении 1:1. Результаты испытаний показали (рис. 3), что введение шлака несколько замедляет кинетику набора прочности, но позволяет обеспечить высокий уровень прочности в марочном возрасте.

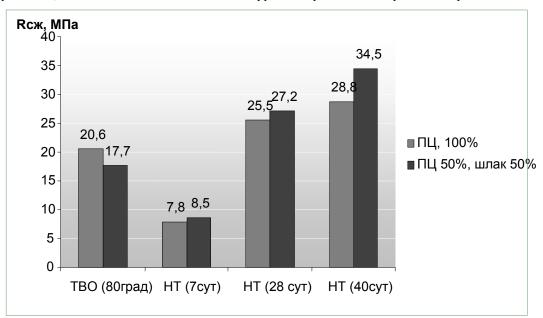


Рис. 3. Прочность при сжатии бетонов на портландцементе (ПЦ) и на молотом стабилизированном шлаке (шлак) после тепловлажностной обработки при 80^{0} C (ТВО) и нормального твердения (НТ)

На основании проведенных исследований был разработан продукт – добавка активная минеральная шлаковая (ДАМШ), которая получается путем совместного измельчения в шаровой мельнице стабилизированного шлака низкоуглеродистого феррохрома и микрокремнезема и соответствует требованиям ТУ 14-139-195–2009. Данная добавка обладает гидравлической активностью и позволяет обеспечивать экономию до 30% портландцемента в составе бетонных смесей. Свойства добавки приведены в табл. 2.

Таблица 2. Технические требования к добавке активной минеральной шлаковой (ДАМШ) на основе стабилизированного шлака низкоуглеродистого феррохрома

Наименование показателя	Значение показателя
Активность минеральной добавки по статистическому показателю прочности (критерий Стьюдента), не менее	2,07
Водостойкость, суток, не менее	3
Насыпная плотность, кг/м ³ , не более	1200
Удельная поверхность, cm^2/r , не менее	4500

Таким образом, проведенные минералого-петрографические исследования позволили спрогнозировать вяжущие свойства стабилизированного шлака низкоуглеродистого феррохрома, которые были подтверждены дальнейшими исследованиями технологических характеристик данного продукта. Вяжущие свойства шлака обеспечиваются наличием в его составе силикатов кальция и магния, кристаллизующихся при охлаждении шлакового расплава в присутствии добавки стабилизатора – борного ангидрида. В результате была разработана технология производства новой активной минеральной добавки, обеспечивающая утилизацию шлаков низкоуглеродистого феррохрома ОАО «ЧЭМК».

Работа выполнена в соответствии с Государственным контрактом Министерства образования и науки Российской Федерации № П1135 от 02.06.2010 г. по Федеральной целевой программе «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг., в рамках реализации мероприятия № 1.3.1 Проведение научных исследований молодыми учеными - кандидатами наук.

ЛИТЕРАТУРА

- 1. Тимашев В.В. Избранные труды. Синтез и гидратация вяжущих материалов. М.: Наука, 1986. 424 с.
- 2. Перепелицын В.А. Основы технической минералогии и петрографии. М.: Недра, 1987. 255 с.

ОСОБЕННОСТИ ЛОКАЛИЗАЦИИ САМОРОДНОГО ЗОЛОТА В НЕКОТОРЫХ МЕСТОРОЖДЕНИЯХ АМУРСКОЙ ОБЛАСТИ, ВЛИЯЮЩИЕ НА ЕГО ИЗВЛЕЧЕНИЕ

Власов Н.Г.¹, Орлова Н.И.²,Ожогин Д.О.², Чистякова Н.И.²

¹ ОАО "Петропавловск", Благовещенск ² ВИМС, Москва

Перспективы добычи золота в Амурской области в настоящее время связывают с освоением коренных золоторудных месторождений, общие запасы которых составляют первые сотни тонн, а прогнозные ресурсы достигают тысячи тонн [5]. Промышленный интерес представляют как первичные, так окисленные, и полуокисленные руды. При этом если вопрос извлечения самородного, даже очень тонкого, золота из окисленных руд — давно решенная проблема, то извлечение тонкого и тонкодисперсного золота из первичных руд различных формаций — один из кардинальных вопросов современной технологии.

Золоторудные месторождения Маломыр и Албын расположены на северо-востоке Амурской области в Верхнеселемджинском золоторудном районе, занимающем самую западную часть Приохотского звена Монголо-Охотской геосинклинальной складчато-надвигово-блоковой системы.

Комплексом минералого-аналитических методов изучены руды месторождений Маломыр и Албын, установлена форма нахождения в них золота, характер его распределения и взаимоотношения с рудными и породообразующими минералами.

Маломырское рудное поле расположено в западной части Селемджино-Кербинской металлогенической зоны Джагдинской провинции Монголо-Охотского золотоносного пояса [3], объединяющей зонально-метаморфизованные в филлитовой, зеленосланцевой фациях вулканогенные и терригенные отложения палеозоя, образующих систему линейных, купольных и межкупольных складчатых структур.

Комплекс континентально-осадочных метаморфизованных отложений, слагающих Маломырское рудное поле, отнесен к златоустовской свите среднего карбона (C₂ZI), отложения которой представлены преимущественно переслаиванием сланцев различного состава: кварц-слюдистых, полевошпат-кварц-слюдистых, хлорит-полевошпат-кварцевых с примесью углерода, слюдисто-кварцевых с редкими прослоями кварцитов, а также кварц-полевошпат-слюдисто-карбонатных, эпидот-хлорит-полевошпат-карбонат-кварцевых сланцев. По данным химического анализа органическое вещество зафиксировано в незначительном количестве (до 1%). В пределах месторождения отложения свиты характеризуются тонким переслаиванием всех разновидностей указанных выше пород, невыдержанной мощностью и составом слоев,