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The overflow probability is an important QoS (Quality of Service) parameter. In this
paper, we analyze the performance of Bridge Monte-Carlo (BMC), an interesting
approach for the estimation of the overflow probability for queueing systems fed by
a Gaussian input process.
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Вероятность переполнения является важным показателем качества обслужи-
вания. В данной статье мы изучаем качественные свойства BMC-оценки этой
вероятности для различных гауссовских входных процессов.

Ключ е вы е c л о в а: гауссовская очередь, дробное броуновское движение, ве-
роятность переполнения, оценивание.

Introduction

We consider a single server queueing system
with constant service rate C fed by a Gaussian
input, which is defined as follows:

At = mt+Xt, (1)

where constant m > 0 and {Xt, t ∈ T} with
T =

{
Z+

}
(or T =

{
R+

}
) is a centered

Gaussian process with stationary increments,
which describes random fluctuations of the input
around its linearly increasing mean. To guarantee
stability of such a system we assume thatm < C.
Let us denote vt := DXt – the variance of Xt.
Then the covariance function has the following
expression:

Γs,t =
1

2

(
vt + vs − v|t−s|

)
. (2)

The stationary overflow probability (i.e., the
probability that stationary workload Q exceeds
some treshold level B) has the following
representation [12]:

Poverflow := P(Q > B)

= P
(

sup
t∈T

(At − Ct) > B

)
= P

(
sup
t∈T

(Xt − ϕt) > 0

)
, (3)

where ϕt := B + rt, r := C −m > 0.
We consider the following important cases of

Gaussian inputs:
1. Fractional Brownian Motion (FBM). In this

case vt = t2H , with Hurst parameter H ∈ (0, 1)
(in the teletraffic framework usually H ∈ (0.5, 1),
corresponding to traffic processes with long range
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dependence). It has been shown in [13] that
FBM arises as the scaled limit process when the
cumulative workload is a superposition of on-off
sources with mutually independent heavy-tailed
on and/or off periods.

2. Sum of two independent FBMs with vt =
t2H1 + t2H2 . The use of this model is also
motivated by the fundamental result in [13] in
case of heterogeneous on-off sources.

3. Integrated Ornstein-Uhlenbeck process
(IOU) with vt = t + e−t − 1. IOU is the
Gaussian counterpart of the well-known Anick-
Mitra-Sondi fluid model [1], and its relevance is
further motivated in [8].

Asymptotic regimes

There are no explicit expressions for (3)
in case of general Gaussian input (there
are some results for specific simple cases
like standard Brownian motion). Therefore
researches were concentrated on asymptotic
analysis and simulation technique in different
regimes which are described below.

Large buffer regime

In this regime the overflow probability

PB = P(Q > B)

is analyzed for large B. The following logarithmic
asymptotic result has been found in [3]:

logPB ∼ − inf
t>0

V 2(t)

2
, as B →∞, (4)

where f ∼ g means f/g → 1 and

V (t) =
B + rt√

vt
.

Expression (4) means that for sufficiently large
values of B

PB ≈ exp

(
− inf
t>0

V 2(t)

2

)
. (5)

The so- called most-likely time τ of the overflow is
the optimizing argument in (4) and (5). For FBM
input, time τ has the following explicit form

τ =
H

1−H ·
B

r
, (6)

implying

V (τ) =

(
B

1−H

)1−H ( r
H

)H
. (7)

Calculation of exact asymptotics (which are more
informative than log asymptotics) is typically
much more difficult problem depending on the
Gaussian component X of the input. We refer to
[7, 10, 11] where such results can be found.

Many sources regime

Often in a large network the input to a
station is typically a superposition of a large
number n of the streams generated by the i.i.d.
sources. This observation leads to analysis of the
so-called many sources regime where the input
to a station has a form At = mnt +

∑n
i=1X

i
t ,

with the i.i.d. centered Gaussian processes {Xi}
(with stationary increments), and the threshold
and capacity are scaled accordingly, i. e., B = nb
and C = nc where parameter b > 0 and c
corresponds to capacity of a single station. Let
now be r := c−m > 0 and ϕt = b+ rt. Then the
overflow probability in the many-source regime
becomes:

Pn := P

(
sup
t∈T

(
n∑
i=1

Xi
t − nrt

)
> nb

)

= P

(
sup
t∈T

(
n∑
i=1

Xi
t − nϕt

)
> 0

)

=d P
(

sup
t∈T

(
X

(n)
t − ϕt

)
> 0

)
,

where X(n)
t :=

√
1/nXt (Xt denotes a generic

element of Xi
t). Note that the last expression

corresponds to equation (3) with the Gaussian
input component X(n)

t .
There are several asymptotic results for the

overflow probability. Most of them claim that,
under mild conditions, such a probability decays
exponentially fast in n. The following results has
been proved in [2]:

− lim
n→∞

1

n
logPn = inf

t>0

V 2(t)

2
, (8)

where
V (t) =

b+ rt√
vt

.

Expression (8) means that for n sufficiently large

Pn ≈ exp

(
−n inf

t>0

V 2(t)

2

)
. (9)

As in a large buffer regime, the optimizing
argument τ in (8) is called the most-likely time
of the overflow. Result (8) gives only logarithmic
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asymptotics. In discrete time the following exact
large deviation (LD) asymptotic holds [9]:

Pn ∼ Φ
(
V (τ)

√
n
)
, n→∞, (10)

where
Φ(x) =

1√
2π

∫ ∞
x

e−y
2/2dy.

For other exact asymptotics we refer to [4].

BMC estimator

Bridge Monte-Carlo (BMC) is a new approach
to estimation of the overflow probability in a
queueing system with Gaussian input.

Originally proposed by some of the authors
in [5], BMC is based on the idea of expressing
the overflow probability as the expectation of a
function of the Bridge Y := {Yt} of the Gaussian
input process X, i.e., the process obtained by
conditioning X to reach a certain level at some
prefixed time t:

Yt = Xt − ψtXt, (11)

where function ψt is expressed via covariance
function Γ as

ψt :=
Γt,t
Γt,t

.

Because the variance of the input is increasing
function of t in all models we consider in the
paper, it is easy to see that ψt > 0 for all
t ∈ T . Moreover, we note that the process Y is
independent of Xτ since

E[XtYt] = Γt,t −
Γt,t
Γt,t

Γt,t = 0.

Further, we have

Poverflow := P
(

sup
t∈T

(Xt − ϕt) > 0

)
= P

(
sup
t∈T

(Yt + ψtXt − ϕt) > 0

)
= P

(
inf
t∈T

(ϕt − Yt − ψtXt) 6 0

)
.

Consider two events:

A =

{
inf
s∈T

(ϕs − Ys − ψsXt) 6 0

}
,

B =

{
inf
t∈T

ψ−1
t [ϕt − Yt] 6 Xt̄

}
.

Fix any ω ∈ A and let s∗ = argmin(ϕs − Ys −
ψsXt̄). Note that the event A is not empty since

ϕt̄ − Yt̄ − ψt̄Xt = 0.

Then

ϕs∗ − Ys∗(ω)− ψs∗Xt(ω) 6 0.

Thus, the following inequality holds

inf
t∈T

ψ−1
t [ϕt−Yt(ω)] 6 ψ−1

s∗ [ϕs∗−Ys∗(ω)] 6 Xt(ω).

That is ω ∈ B, and hence A ⊆ B. Similarly, we
can check that B ⊆ A. It means that A = B.
Denote

Y := inf
t∈T

ϕt − Yt
ψt

. (12)

Recall that

Xt = N(0, Γt, t) =d

√
Γt, tN(0, 1),

where =d stands for stochastic equivalence.
Then, the overflow probability can be rewritten
as follows

Poverflow = P
(
Y 6 Xt̄

)
=

∫
R
P(Xt̄ > u)P(Y ∈ du)

=

∫
R
P
(
N(0, 1) >

u√
Γ(t̄, t̄)

)
P(Y ∈ du)

= E

[
Φ

(
Y√
Γt̄, t̄

)]
,

where independence Y and Xt̄ is used. Given an
i.i.d sequence {Y (i)

, i = 1, ..., N} distributed as
Y , the estimator of Poverflow is defined as follows:

P̂overflow := P̂overflow(N) =
1

N

N∑
i=1

Φ

(
Y

(i)√
Γt,t

)
.

In spite of the fact that the BMC estimator is not
asymptotically efficient, its variance is lower than
for the single-twist Importance Sampling (which
is comparable in the terms of computational
complexity) [6]. Moreover, the approach using
BMC estimator is extremely flexible since it does
not rely on a change of measure. Furthermore,
to apply this estimator the knowledge of the
correlation structure of the incoming traffic is
only required. (As we mentioned above the
assumption of the Gaussianity of Xt is typically
fulfilled when a lot of flows are multiplexed
together.) Although the choice of t̄ is arbitrary,
in the following we will always assume that t = τ ,
i.e. as the conditioning point we will consider the
most-likely time of the overflow. For a wide range
of values of the queue parameters, the minimum
in (12) is almost always attained near the most-
likely time and does not vary significantly. Let us
denote

G(t) :=
ϕt − Yt
ψt

.
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and note that G(t̄) = ϕt̄ is deterministic.
Assume that Y

(i) ∈ [ϕτ − h, ϕτ ], where
evidently the span h depends on the samples
{Y (i), i = 1, ..., N}. Then by the monotonicity
of the tail distribution Φ,

Φ

(
ϕτ√
Γτ,τ

)
6 P̂overflow 6 Φ

(
ϕτ − h√

Γτ,τ

)
. (13)

Consider the difference

∆(h) := Φ

(
ϕτ − h√

Γτ,τ

)
− Φ

(
ϕτ√
Γτ,τ

)
,

which can be approximated as

∆(h) ≈ −Φ′

(
ϕτ√
Γτ,τ

)
h√
Γτ,τ

=
1√
2π
e−Z

2/2 h√
Γτ,τ

, (14)

where Z = ϕτ√
Γτ,τ

. Actually if the distance

∆ between lower and upper bound in (13) is
not too large, we can estimate the accuracy of
approximation (10). We note that V (τ)

√
n =

ϕτ√
Γτ,τ

, so expression (10) indeed gives only lower

bound of P̂overflow. Below we verify the accuracy
of approximation (10) by simulation.

Simulation results

In this section, a few numerical results are
presented which demonstrate the properties and
accuracy of the BMC estimator.

We first show the accuracy of the BMC
estimator for the different input processes, by
comparing the simulation results with the known
asymptotics (both for large buffer regime and for
many sources regime).

Then we investigate the properties of the
BMC estimator from an analytical point of
view, taking into account the dependence of
the conditional overflow probability from the
simulated sample paths of the input process in
the case of FBM traffic.

Comparison with asymptotic results

The first set of simulations compares
the estimates of BMC with the asymptotic
expressions recalled above.

Figures 1–3 refer to many sources regime
for different input processes: FBM, sum of
independent FBMs and IOU, respectively. In all
cases the estimation of the overflow probability

uses N = 106 sample paths and is compared with
the exact asymptotic given by (10). The following
parameters are used in simulation: r = 0.1; b =
0.3; H = H1 = 0.8; H2 = 0.6. As figures show, a
good consistency between theoretical values and
simulation results are obtained over a wide range
of the overflow probability values.
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Fig. 1. Simulation vs. asymptotic (10): FBM
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Fig. 2. Simulation vs. asymptotic (10): the
sum of two independent FBMs
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Fig. 3. Simulation vs. asymptotic (10): IOU
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Moreover, for FBM input Figure 4 shows
the behavior of the relative error of the
BCM estimator (defined as the ratio between
the empirical standard deviation and the
corresponding probability). Although the relative
error is not bounded (indeed, BMC is not even
asymptotically efficient [6]), it grows slowly, and
for the overflow probabilities of the order of 10−12

(compare the values in figures 1 and 4) is still
less than 1 %.
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Fig. 4. Relative Error for FBM

Finally, figure 5 refers to the large buffer
regime and compares the LD bound (5) with the
simulation results in the case of a single FBM
(with H = 0.8 as before) process. In this case B
goes from 10 to 100 and r = 1, considering N =
104 sample paths (the choice is motivated by the
relative high values of the simulated probability).
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Fig. 5. Simulation vs. asymptotic (5) for FBM

Performance analysis of BMC

The second set of simulations aimed at
checking the variability of h, and hence of ∆ in

(14), in order to understand the goodness of the
asymptotic approximation (10).

The tests are performed considering a single
FBM flow in the many sources regime and using
the same parameters as in previous section.

To give a visual idea of the variability of Y (i),
figure 6 compares its first 1000 samples with the
theorethical upper bound G(τ) = ϕτ for n = 500
FBM sources.

As highlighted in the figure, in this example
h ≈ 0.298 is not significantly lower than
ϕτ = 1.5, confirming the goodness of the LD
approximation (10).
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Fig. 6. Simulation results for Y
(i)

To better understand the variability of Y ,
figures 7 – 10 shows the empirical distribution of
Y for different values of n. As expected, for large
values of n, Y is concentrated near G(τ) = 1.5,
and this fact gives a formal motivation for the
analysis of ∆ in (14).
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Fig. 7. Histogram of the distribution of Y (n = 50)
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Fig. 8. Histogram of the distribution of Y (n = 100)
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Fig. 9. Histogram of the distribution of Y (n = 500)
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Fig. 10. Histogram of the distribution of Y
(n = 2000)

For sake of completeness, figure 11 shows the
variation of Y (i) for FBM in the large buffer
regime (buffer size b = 2000) and the following
values of the system parameters: H = 0.8; r = 1;
N = 103. In this example h ≈ 658.941, but the
ratio h√

Γτ,τ
≈ 0.497. Thus, inspite of that h is

rather large, the increment of the argument of

function Φ in (13) is h√
Γτ,τ

and comparably small.

It shows that approximation (14) can be applied.
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Fig. 11. Simulation results for Y
(i)

Conclusions

In this paper, we have analyzed the main
properties of BMC estimator, a simulation
approach that exploits the Gaussian nature of
the input process and relies on the properties of
Bridges.

Several sets of simulations were carried
out in order to compare the estimations with
well-known asymptotic bounds for different
input processes and in different working
conditions, considering large buffers as well as
the superposition of many i.i.d. sources.

Focusing on the latter scenario, we
investigated the empirical distribution of the
estimates and the dependence of the conditional
overflow probability from the simulated sample
paths of the bridge process, in order to
understand the applicability of asymptotic
results. The simulations highlighted that the
shape of the histograms strongly depends on
the number of multiplexed sources, confirming
the well-known heuristic that rare event happens
in the more likely way.

This work is supported by the strategic
development program of Petrozavodsk State
University for 2012–2016 and Russian
Foundation for Basic research, project N 10-07-
00017.

References

1. Addie R., Mannersalo P., Norros I. Most
probable paths and performance formulae for
buffers with Gaussian input traffic // European
Transactions in Telecommunications. 2002. Vol. 13.
P. 183–196.

��
��
59



2. Botvich D., Duffield N. Large deviations, the
shape of the loss curve, and economies of scale in
large multiplexers // Queueing Systems. 1995. Vol.
20. P. 293–320.
3. Debicki K. A note on LDP for supremum of
Gaussian processes over infinite horizon // Stat.
Probab. Lett. 1999. Vol. 44. P. 211–220.
4. Debicki K., Mandjes M. Exact overflow
asymtotics for queues with many Gaussian inputs.
Report PNA-R0209 March 31, 2002.
5. Giordano S., Gubinelli M., Pagano M. Bridge
Monte-Carlo: a novel approach to rare events
of Gaussian processes // Proc. of the 5th
St. Petersburg Workshop on Simulation. St.
Petersburg, Russia, 2005. P. 281–286.
6. Giordano S., Gubinelli M., Pagano M. Rare
events of Gaussian processes: a performance
comparison between Bridge Monte-Carlo and
Importance Sampling. In Next Generation
Teletraffic and Wired/Wireless Advanced
Networking. St. Petersburg, Russia, 2007. P. 268–
280.
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