Работа выполнена при поддержке РФФИ - № 05-05-65233, № 05-05-64754, Научной школы - НШ-7650.2006.5 и Фонда содействия отечественной науке.

ЛИТЕРАТУРА

Аксюк А.М. Экспериментально обоснованные геофториметры и режим фтора в гранитных флюидах. // Петрология, 2002.–10, №6.–630–644.

Бородулин Г.П., Чевычелов В.Ю., Зарайский Г.П., Борисовский С.Е. Экспериментальное исследование растворимости кристаллического колумбита в грантных расплавах глинозёмистого (A/NK \sim 1.7, нормального (A/NK \sim 1.7) и щелочного (A/NK \sim 1.7) состава при T = 650-850 °C и P = 0.3 -4 кбар: первые результаты. Тезисы докладов Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии ЕСЭМПГ-2006. - М., с.10-11.

Зарайский Г.П. (2004) Условия образования редкометальных месторождений, связанных с гранитным магматизмом/ Смирновский сборник – 2004 (научно-литературный альманах); Фонд им. академика В.И. Смирнова. – М., с.105-192

Ситнин А.А., Гребенников А.М., Сункинзян В.В. Этыкинское танталовое месторождение. // Месторождения Забайкалья. Чита-Москва: Геоинформмарк, 1995.- 1, кн. 1.- С. 86-95.

Чевычелов В.Ю., Зарайский Г.П., Борисовский С.Е., Борков Д.А. (2005) Влияние состава расплава и температуры на распределение Та, Nb, Mn и F между гранитным (щелочным) расплавом и фторсодержащим водным флюидом: фракционирование Та, Nb и условия рудообразования в редкометальных гранитах. / «Петрология», том 13, № 4, с.339-357.

Чевычелов В.Ю., Зарайский Г.П., Борисовский С.Е., Некрасов А.Н. (2005) Растворимость колумбита и диффузия Та, Nb, Fe и Mn в Li-F гранитных расплавах при 740-980°С и 1 кбар. / В кн.: «XV Российское совещание по экспериментальной минералогии». Материалы совещания. Сыктывкар: ИГ Коми НЦ УрО РАН, Геопринт. с.123-125.

Linnen R.L., Keppler H. (1997) Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust // «Contrib. Mineral. Petrol.» 1997. V. 128. P. 213-227.

Linnen R.L. (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F: constraints for mineralization in rare metal granites and pegmatites // «Economic Geology». V. 93. P. 1013-1025.

ОСОБЕННОСТИ КРИСТАЛЛИЗАЦИИ И ХИМИЧЕСКОГО СОСТАВА ТИТАНСОДЕРЖАЩИХ ГРАНАТОВ АНДРАДИТОВОГО РЯДА В ЩЕЛОЧНО-УЛЬТРАОСНОВНЫХ КОМПЛЕКСАХ

Васильева В.А.

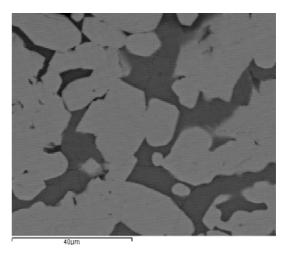
СПбГУ, Санкт-Петербург, vasveronica@mail.ru

В породах щелочно-ультраосновных комплексов распространены только кальциевые гранаты. Титановые гранаты встречаются в ийолит — мельтейгитах, реже — в нефелиновых пироксенитах и фенитах (Евдокимов, 1982). Железо— глинозёмистые гранаты распространены широко и приурочены к продуктам автометасоматического изменения пироксенитов, пород ийолит — мельтейгитовой серии и их пегматитов (Каледонский комплекс..., 1965). Для мелилитовых пород также характерны гранаты гроссуляр — андрадитового ряда, либо титанистый андрадит, причём устанавливается отчётливая зависимость вариаций состава граната от условий формирования пород, прослеженная нами для одного из классических районов проявления мелилитовых пород — щелочно-ультраосновного комплекса Турьего полуострова.

Так, гранаты из пород, образовавшихся за счет гипербазитов (из ункомпагритов и пироксеновых турьяитов), наследуют высокое содержание алюминия и магния, а гранаты турьяитов, образовавшихся по ийолит-мельтейгитовым породам, богаты железом и титаном. В окаитах гранат является продуктом позднего изменения пород и по составу близок к гроссуляру (Васильева, 2002). В гранат – флогопитовых метасоматитах, сформированных по

Рис. 1. Зональный кристалл титанистого андрадита из турьяитов Кузнаволокского массива Турьего п-ова. В шлифе внутренняя часть и внешняя кайма окрашены в желтый цвет, средняя зона—бурого цвета.

турьяитам, титанистый андрадит образует гнезда диаметром до нескольких сантантиметров. Эти гнезда обуславливают характерные пятнисто — полосчатые текстуры пород. Кристаллы образуются в пустотках; среди форм, образующих кристаллы, главенствующей является ромбододекаэдр, изредка притупляемый гранями тетрагонтриоктаэдра. Часто гранат имеет зональную окраску (рис. 1), вызванную изменением содержания Fe и Ti (таблица, ан. 1 и 2). Титанистый андрадит слагает вместе с перовскитом каймы вокруг зерен магнетита.


компоненты	1	2	3	4
SiO_2	44,20	37,90	32,08	24,36
TiO ₂	1,40	6,55	12,56	14,91
ZrO_2	0,00	0,00	5,07	0,00
Al_2O_3	3,50	1,53	3,52	1,80
FeO	14,64	16,71	11,40	27,02
MgO	0,00	1,43	2,52	0,99
CaO	36,24	35,86	32,85	32,50
CVMMa	99 98	99 98	100.00	101.58

Химический состав гранатов по данным микрозондового анализа (масс.%).

В них обычна последовательность кристаллизации магнетит \rightarrow перовскит \rightarrow гранат, окраска граната при этом ослабевает к краю агрегатов.

Сравнительно небольшое количество титана, входящего в структуру титанистых андрадитов в турьяитах, обуславливается небольшим содержанием титана в системе, наличием других титансодержащих фаз (перовскит). В породах щелочной серии массива Африканда содержание титана настолько велико, что помимо формирования существенно титановых минералов (титаномагнетит, перовскит) в кристаллическую решетку шорломита входит около 12,6 % TiO₂.

Для выяснения пределов вхождения титана в кристаллическую решетку граната, нами был проведен эксперимент по плавлению смеси шорломита и перовскита, находящихся в отношении 1:1. Нагрев производился до температуры 1250°С при атмосферном давлении. В результате была получена кристаллическая масса с темно-коричневыми кристалликами шорломита, промежутки между которыми заполнены волластонитом (рис. 2). Следует отметить, что синтезированный гранат отличается избытком титана, железа при резкой недосыщенности

Puc. 2. Формы выделения синтетического титанового граната (светлое), промежутки заполнены волластонитом.

кремнезёмом (таблица, ан. 4). Вопрос о структурной позиции титана дискуссионный, для его выяснения в дальнейшем необходимо провести детальные рентгеноструктурные исследования.

ЛИТЕРАТУРА

Васильева В.А. Типохимические особенности гранатов в мелилитовых породах Турьего полуострова// Геология и геоэкология, исследования молодых. Материалы XIII молодежной конференции, посвященной памяти К.О.Кратца. Апатиты, 2002.

Евдокимов М. Д. Фениты Турьинского щелочного комплекса Кольского полуострова. Л., 1982.

Каледонский комплекс ультраосновных - щелочных пород и карбонатитов Кольского полуострова и Северной Карелии. Под ред. А. А. Кухаренко, М.: Недра, 1965. 768 с.

ОСОБЕННОСТИ БАРИТОВОЙ МИНЕРАЛИЗАЦИИ УЧАСТКА СЕВЕРНАЯ ЖИЛА МЕСТОРОЖДЕНИЯ БАРИТОВАЯ ГОРКА

Гадоев М.Л.

Институт геологии Академия Наук Республики Таджикистан, silver 05@mail.ru

В районе месторождения Баритовая горка среди вулканогенных пород акчинской свиты (PZ_2^3) развита зона рудоносных кварцевых, баритовых, кварц-баритовых и кварц-флюоритовых жил и прожилков, именуемая участком Северная жила.