ЛИТЕРАТУРА

Борисова В.В. Комплексы малых интрузий базит-ультрабазитов. В кн.: Расслоенные массивы Карело-Кольского региона. Ч. 1. Апатиты. 2004, с. 117-132.

Юдин Б.А. Магматизм и металлогения основных и ультраосновных комплексов протерозоя Главного хребта (Кольский полуостров). Апатиты. 1980.

Чалых Е.Д., Берман И.И. Отчет Улитареченской партии о результатах ГСР м-ба 1:50 000, проведенных в 1959 г. в районе оз. Улита – ср. течения р. Туломы (Кольский район, мурманская обл.). ТФ Мурманск, 1960.

ГЕОХИМИЯ КАРБОНАТИТОВ БАЛТИЙСКОГО И УКРАИНСКОГО ЩИТОВ

Матвийчук М.В.

Институт геохимии, минералогии и рудообразования НАН Украины, г. Киев

Балтийский и Украинский щиты - во многом сходные геологические структуры, имеющие близкий набор магматических и метаморфических пород, сравнение которых позволяет выстраивать петрологически и геохимически полные эволюционные ряды.

Так, на Украинском щите доказательно установлен только один возрастной (протерозойский) этап проявления карбонатитового магматизма, причем только абиссального уровня, с довольно бедным набором фациальных типов карбонатитов. Но большое разнообразие, как по возрасту, так и по петрологическим типам щелочных пород, с которыми, в принципе, могут быть связаны карбонатиты, позволяет надеяться на обнаружение их в будущем. Напротив, на Балтийском щите, как щелочные породы, так и карбонатиты представлены самыми разнообразными типами, сформировавшимися как в абиссальных, так и в приповерхностных условиях на протяжении от протерозоя до мезозоя.

Сравнение карбонатитов двух щитов, помимо теоретического, имеет и чисто прикладное значение. На наш взгляд будет полезным сравнить особенности уже разрабатываемых карбонатитовых месторождений Балтийского щита (например, Ковдора, Хибин) с перспективными для разработки на Украине (Черниговский массив и др.).

Балтийский щит. Тикшеозерско-Елетьозерский комплекс (Северная Карелия) с проявленным магматизмом ультрамафит-щелочно-сиенитового состава изучен довольно основательно. Существует мнение, что вышеупомянутый комплекс формировался в сфекофенскую эпоху активизации 1,8-1,9 млрд. лет (Геология Карелии, 1987). Наиболее вероятная картина формирования сложного по строению многофазного комплекса связана с растянутой во времени магматической деятельностью в промежутке от 2,450 до 1,8 млрд. лет. Наиболее крупными по размерам среди данного комплекса являются Елетьозерский и Тикшеозерский массивы.

В карбонатитах Тикшеозерокого массива наиболее распространенным карбонатом является кальцит. Среди других выделены доломит, анкерит, магнезит, брейнерит, арагонит и акцессорный анкилит (Сафронова Г.П., 1982). Изотопный состав углерода и кислорода определялся в монофракциях карбонатов и в валовых пробах пород, в основном, отобранных по скважинам, пробуренным по карбонатитам и, в меньшей степени, из габброидных пород, испытавших карбонатизацию.

Изотопный состав углерода в кальцитах, отобранных по Тикшеозерскому массиву, свидетельствует об эндогенном источнике вещества и о карбонатитовой природе карбонатных пород (Сафронова Г.П., 1982). Авторы указанной работы связывают низкие значения δ^{18} О с температурным режимом карбонатитообразования, однако, на наш взгляд, такие аномальные цифры невозможно объяснить, не привлекая механизма обмена с изотопно-легкими водами. Если учесть, что одними из самых распространённых пород на Тикшеозерском массиве являются серпентинизированные оливиниты, то существенная роль воды в образовании карбонатных низкотемпературных образований, в том числе карбонатных прожилков, становится очевидной.

Наши данные (таблица) несколько отличаются от вышеприведенных в сторону более высоких значений δ^{18} О как для собственно карбонатитов, так и для карбонатных прожилков в пироксенитах и габброидах. Диапазоны значений карбонатитов δ^{18} О и δ^{13} С в них (-4,0 - -6,3% и 10-12,6%, соответственно) довольно узкие и не выходят за пределы, обычно приводимые для карбонатитов. Требует объяснения несколько "утяжеленные" значения δ^{18} О в некоторых карбонатах Тикшеозерского массива. По имеющемуся у нас материалу магнетитсодержащие карбонатиты Ковдорского, Вуориярвинского и др. массивов также характеризуются утяжеленным изотопно-кислородным составом.

<u>Ковдорский массив ультраосновных щелочных пород и карбонатитов</u> – один из наиболее полно изученных благодаря тому, что он разрабатывается как комплексное месторождение апатитового, магнетитового, редкометалльного и др. видов сырья.

Довольно подробно был изучен и изотопный состав карбонатитов (Кулешов В.Н., 1986). При этом все исследовавшие изотопный состав углерода в этих карбонатитах отмечали некоторое обогащение их изотопом

 13 С. Наши данные также попадают в этот диапазон. Кроме того, карбонатиты, не связанные с магнетитовыми рудами (флогопитовый и строительный карьеры) имеют более низкие значения δ^{13} С.

В <u>Хибинском массиве</u> карбонатиты были открыты сравнительно недавно. Карбонатиты представлены несколькими последовательно формирующимися разновидностями карбонатитов. Среди них - эгирин-биотитовые, кальцитовые карбонатиты, содержащие акцессорные пирохлор, циркон и другие минералы; манганокальцитовые карбонатиты с хуанхитом, синхизитом, паризитом, бастнезитом, флюоритом; мангансидеритовые карбонатиты с давсонитом, нахколитом, криолитом и др. Изотопный состав этих карбонатитов исследовался О.Б.Дудником и др. (Дудник О.Б., 1984). Наши данные, в принципе, согласуются с приведенными в этой работе, однако, в нашем распоряжении имеется только 2 пробы, одна из них марганецсодержащий карбонатит с бебранитом. Он оказался резко отличным по изотопному составу как кислорода, так и углерода от обычных кальцитовых карбонатитов с пирохлором.

Главные геохимические характеристики и рудная специализация карбонатитов Балтийского и Украинского щитов

	T						
Массив, проявление. Возраст в млн. лет, (метод)	морфологический тип)	Геохимические характеристики					D
		$\delta^{13}C$	δ ¹⁸ Ο	⁸⁷ Sr/ ⁸⁶ Sr	Сумма TR (TR+Y) (г/т)	La/Yb	Рудная специа- лизация
Черниговский массив 2090-2190 (U-Pb)	Крутопадающие дайкоподобные тела и серии параллельных даек мощностью 50-60, иногда до 100 м. среди фенитов, нефелиновых и щелочных сиенитов, щелочных пироксенитов. Состав карбонатов: кальцит (сёвиты, альвикиты, кимберлитовые карбонатиты) доломит, кальцит (бефорситы)	-3.0 -8.1	5.91 3.5	0.7013	2800	Типы- I-46.5; II-82.2; III-128; IV-140	P ₂ O ₅ , Zr, Nb
Петрово- Гнутовская флюорит- карбонатная дайка 1920-2100 (Pb)	Дайка мощностью 0,3-2,85м (в раздувах) среди граносиенитов. Состав карбонатов: кальцит, паризит	-5.5 -8.1	10.11 6.6				TR (паризитовая)
Хлебодаровский карьер 1825±35 (K-Ar)	Маломощные жилы (от 5-10см до 30- 50см в раздувах) среди чарнокитоидов. Состав карбонатов: кальцит.	-2.4 -8.5	8.51 3.2	0.70258± 5.5		40	P ₂ O ₅ , Nb, TR
Октябрьский массив 1800 (U-Pb)	Маломощные жильные образования (до1м) среди основных и ультраосновных пород, щелочных и нефелиновых сиенитов. Состав карбонатов: кальцит, иногда сидерит, доломит	-5.1 -8.6	6.21 4.1	0.7024- 0.7029	589-3345	8.4-66.2	P ₂ O ₅ , TR
Тикшеозерский массив 1850 (U-Pb)	Жило- и дайкоподобные тела в карбонатизированных пироксенитах и габбро-пироксенитах. Состав карбонатов: кальцит	-3.0 -6.3	10.0 16.7		570-5187 в апатите		TR, апатит
Ковдорский массив 360-410 (U-Pb)	Жило- и дайкоподобные тела среди фенитов, оливинитов, пироксенитов и в апатит-форстерит-магнетитовых рудах. Состав карбонатов: кальцит, доломит, сидерит	-0.3 -8.8	8.21 4.9	0.7035- 0.7062	(1154- 1661)	133 -190	апатит, TR, Ba, Sr, Nb, Ta, Zr
Хибины 365±25 (Rb-Sr)	Гела карбонатитов с пирохлором и бебранитом. Состав карбонатов: кальцит	-2.2 -4.3	8.41 2.6	0.7031- 0.7040			апатит, Sr, Та, Се

Украинский щит. На Украинском щите в последнее время обнаружено много проявлений, которые с определенной долей условности можно относить к карбонатитам (Загнитко В.Н., 1989).

Черниговский карбонатитовый массив является одним из наиболее глубоко эродированных. Глубина эрозионного среза по кальцит-доломитовому и оливин-магнетитовому геобарометрам оценивается в 10-20 км.

Вопросы генезиса этих карбонатитов не всеми трактуются однозначно, но в пользу магматической природы свидетельствуют многочисленные факты, приведенные в литературе и рассмотренные в настоящей работе. К ним можно добавить низкое отношение 87 Sr/ 86 Sr (0,7013) в кальците из сёвита, указывающее на мантийное происхождение стронция, а, следовательно, и кальция. Однозначно на существование магматического

распада в период формирования карбонатитов Черниговского комплекса указывают включения затвердевших расплавов в бадделеите карбонатитов. Таким образом, характеризуемые карбонатиты, подразделяющиеся на кальцитовые, кальцит-доломитовые и доломитовые, рассматриваются ними как мантийные интрузивно-магматические образования.

Выполненные ранее исследования показали, что вариации изотопного состава кислорода не зависят от их минерального типа, мощности тел и состава вмещающих пород (Загнитко В.Н., 1989).

Полученные новые данные предоставили возможность найти корреляционные зависимости между изотопно-кислородным составом карбонатитов и некоторыми их минералого-петрохимическими особенностями и объяснить причины вариаций δ^{18} О. Установлено, что в карбонатитах одного и того же минерального типа с понижением железистости парагенезисов увеличивается величина δ^{18} О карбонатов. Особенно отчетливо проявляется корреляция между значением δ^{18} О кальцитов и содержанием в них FeO.

Связь между изотопным составом углерода карбонатов и содержанием в них FeO, а также степенью окисленности железа в породе не обнаружена.

Для карбонатитов с наиболее железистыми силикатами (и незначительным содержанием магнетита) были получены наиболее "глубинные" значения δ^{13} С и δ^{18} О. С увеличением количества магнетита и возрастанием магнезиальности парагенезисов (параллельно с этим происходит уменьшение содержания FeO в карбонатах) происходит утяжеление изотопного состава кислорода карбонатов. Такие изменения с некоторыми локальными отклонениями прослеживаются в направлении с севера на юг по Черниговской зоне разломов. В этом направлении уменьшается глубина эрозионного среза массива. Для наиболее южного (Бегим-Чокракского) проявления карбонатитов характерны наиболее высокие значения δ^{18} О и минимальные содержания железа в составе кальцитов.

Характерная для Черниговского массива ассоциация графита с магнетитом и более частое присутствие последнего в бефорситах и альвикитах, чем в севитах, а также наблюдаемая в ряде случаев отрицательная корреляционная связь между содержанием FeO в составе карбоната и количеством магнетита, позволяют предположить наличие сидеритового компонента в первичном карбонатитовом расплаве (Кривдик С.Г., 1991).

Петрово-Гнутовская флюорит-карбонатная жила с бастнезитом и паризитом имеет карбонатитовую природу. В пользу этого свидетельствует селективно цериевый состав редких земель, флюорита и карбоната, фенитизация вмещающих пород, а также изотопные данные (см. таблицу), что характерно для карбонатитов.

Хлебодаровские кальцитовые дайки и жили с эгирином, рибекитом и апатитом также относятся к карбонатитам (Загнитко В.Н., 1989). О карбонатитовой природе этих образований свидетельствуют: высокое содержание стронция (1-3 %), повышенное - редких земель, наличие таких характерных минералов карбонатитов, как апатит, пирохлор, монацит, изотопно-геохимические данные, а также экзоконтактовые ореолы фенитизации вдоль них. Для карбонатитов Хлебодаровского участка характерны очень узкие диапазоны значений δ^{13} С и δ^{18} О (от -7.8 до -6.9% и от 8.0 до 11.2%, соответственно), независимо от мощности карбонатных тел и состава вмещающих пород (см.таблицу). На южном продолжении дайки буровыми работами установлены карбонатные тела мощностью до 1.0 м с паризитом (В.В. Васильченко, устное сообщение).

В Октябрьском массиве наблюдаются как карбонатные, карбонатсодержащие породы, так и тектонические брекчии, сцементированные карбонатом. Все эти разновидности встречаются среди основных, ультраосновных, щелочных пород, в том числе нефелиновых сиенитов. Чаще всего карбонатные проявления связаны с габбро и пироксенитами, которые испытали глубокие изменения. В этом случае различают карбонат-полевошпат-слюдистые (по габбро) и карбонат-биотит-амфиболовые (по пироксенитам) разновидности. Характерной особенностью всех карбонатных проявлений Октябрьского массива является наличие в них апатита, циркона, пирохлора, которые ассоциируют с кальцитом. Это свидетельствует о том, что формирование пород сопровождалось апатит-редкометальной минерализацией, что является признаком карбонатитов. Карбонатные образования значительно обогащены стронцием, иттрием, цирконием, ниобием, лантаном, церием. Значение δ^{13} С и δ^{18} О карбонатов Октябрьского массива отвечают типичным карбонатитам, а соотношение δ^{13} С го δ^{18} О карбонатов Октябрьского массива отвечают типичным карбонатитам, а соотношение δ^{18} С с свидетельствуют о глубинном источнике вещества карбонатных пород (см. таблицу).

Карбонатитовые комплексы Балтийского и Украинского щитов очень разнообразны по уровням генерации, условиям образования и минеральному парагенезису. Это дает возможность проследить влияние различных факторов на изотопный состав углерода и кислорода в карбонатах, оксидах, силикатах и графите.

ЛИТЕРАТУРА

Геология Карелии. – Л.: Наука, 1987. – 231с.

Дудник О.Б., Манаков Ф.В., Кравченко М.П. и др. Карбонатиты Хибин. – Апатиты, 1984. – 98с.

Загнитко В.Н., Луговая И.П. Изотопная геохимия карбонатных и железисто-кремнистых пород Украинского щита - Киев: Наук. думка, 1989. - с. 316.

Кривдик С.Г., Загнитко В.Н., Луговая И.П. Изотопный состав минералов в карбонатитах Черниговского массива (Приазовье) как индикатор условий их кристаллизации // Мин. журн., 1991, т. 19. - №6. – с. 28-42.

Кулешов В.Н. Изотопный состав и происхождение глубинных карбонатитов. – М.: Наука, 1986. – с. 5-123.

Сафронова Г.П., Гаврилова Л.М. О карбонатитах Тикшеозерского массива (данные изотопного анализа кислорода карбонатитов). В кн. Металлогения Карелии. – Петрозаводск. – КФ АН СССР, 1982. – с. 161-167.