НОВОЕ ПРОЯВЛЕНИЕ КАРБОНАТИТОВ В РАЙОНЕ ОЗ. КОТОЗЕРО (СЕВЕРНАЯ КАРЕЛИЯ)

Франтц Н. А. 1 , Сибелев О. С. 2

Щелочной магматизм в северо-восточной части Балтийского щита проявлен исключительно интенсивно, как на Кольском полуострове, так и в Северной Карелии. В настоящее время в пределах данной территории выявлено и в различной степени изучено более 30 щелочных и карбонатитовых массивов (Булах А. Г., Иваников В. В., 1984).

Помимо крупных многофазных плутонов в Карело-Кольском регионе существуют дайковые комплексы, включающие карбонатиты. Часть из них сосредоточены в северо-западном Беломорье. Наиболее крупными дайковыми комплексами являются кандалакшский и турьинский, несколько малочисленных узлов расположены в районе губы Княжей, о-ва Великий, Чупинской губе, в районе Керети (Bulah et. al., 2004).

Еще одно локальное проявление предположительно карбонатитового магматизма Карело-Кольского региона было обнаружено в ходе маршрутных работ сотрудниками лаборатории петрологии и тектоники Института геологии Карельского научного центра РАН О.С. Сибелевым и В.В. Травиным на северном берегу оз. Верхнее Котозеро (примерно в 18 км на северо-запад от пос. Чупа).

Преимущественным распространением в этом районе пользуются биотитовые и биотит-амфиболовые гранито-гнейсы, а также глиноземистые гранат-биотитовые и кианит-гранат-биотитовые гнейсы (Степанов, 1981)

Тела карбонатных пород (далее будем называть их карбонатитами) залегают в виде серии разветвляющихся или расположенных кулисами маломощных тел (мощностью до 0,6 м). Вмещающие породы представлены среднезернистыми мезократовыми, интенсивно мигматизированными и деформированными до плойчатости амфиболсодержащими гнейсами. Контакты в целом субсогласны с гнейсовидностью вмещающих пород, однако, на отдельных участках отмечаются их кососекущие соотношения. Кроме того, карбонатиты вмещают мигматитовые жилы плагиомикроклинового гранита мощностью 3–5 см. Приконтактовые изменения ни в эндо-, ни в экзоконтактовых зонах тел не наблюдаются.

Содержание петрогенных и редких элементов в исследуемых породах

Компонент	1	2	3	4	Компонент	1	2	3	4	Компонент	1	2	3	4
SiO ₂	4.03	2.72	9.55	1.16	Rb	1.99	14	5.5	3.48	La	131	608	454	171
TiO ₂	0.04	0.15	0.29	0.04	Sr	6240		2265	5750	Ce	401	1687	773	417
Al_2O_3	0.52	1.06	0.24	0.14	Cs	0.04	20	0.5	0.08	Pr	61.7	219		50.8
TFe ₂ O ₃	0.86	3.25	2.9	2.82	Ba	53.1		1702	362	Nd	281	883	213	191
MnO	1.00	0.52	0.29	0.31	Pb	3.53	56		5.31	Sm	56.1	130	28	31.7
MgO	0.62	1.8	2.7	2.72	Y	58.6	119	40	45	Eu	13.6	39	7.0	8.74
CaO	52.6	49.12	43.68	50.5	Zr	59.8	189	20	123	Gd	41.2	105		26
Na ₂ O	< 0.05	0.29	0.06	0.05	Nb	2.95	1204	226	283	Tb	4.11	9	2.7	2.66
K ₂ O	0.10	0.26	0.09	0.11	Hf	1.48	3.2	0.57	0.59	Dy	16.5	34		11.5
P_2O_5	4.68	2.10	1.88	4.23	Та	< 0.1	5	2.8	9.87	Но	1.94	6		1.46
ппп	36.2	38.7	37.02	37.7	Th	1.12	52	24	4.29	Er	4.51	4		3.58
Сумма	100.7	99.97	98.80	99.78	U	0.43	8.7	16	69.6	Tm	0.52	1		0.42
										Yb	3.07	5	4.2	2.51
						•				Lu	0.4	0.7	0.57	0.33

Примечание. Карбонатиты: 1– котозерский, 2 – средний мировой кальцитовый (Woolley A. R., Kempe D. R. C., 1989), 3 – турьинской дайковой серии (Рухлов А. С., 1999), 4 –Тикшеозерского массива (данные Н. А. Франтц)

Сами карбонатиты — удивительно красивые породы, ярко розового или серовато-сиреневого цвета, равномерносреднезернистые, практически массивные, иногда со слабо выраженной полосчатостью. Полосы (мощностью до 5 мм) субсогласны контактам тел, довольно редкие, светлее и обогащены мелкозернистым апатитом. Основным породообразующим минералом в этих породах является карбонат — 90—95%, который представлен исключительно кальцитом, в качестве второстепенного минерала присут-

¹СПбГУ, Санкт-Петербург, NFrantz@mail.ru

²Институт геологии КарНЦ РАН, Петрозаводск

ствует апатит количество которого может достигать 10%. Присутствующие ксенолиты гранитоидного состава сильно карбонатизированы и сложены соответственно полевыми шпатами, кварцем, амфиболом и вторичным клиноцоизитом, которые встречаются также в виде самостоятельных зерен и являются, вероятно, ксенокристаллами.

По химическому составу основными петрогенными составляющими являются CaO и CO_2 . Существенно содержание P_2O_5 , связанное с присутствием в породах значительного количества апатита. Обогащенность пород SiO_2 можно объяснить наличием ксенолитов силикатных пород. Остальные петрогенные элементы присутствуют в небольших количествах (таблица).



Рис. 1. Распределение редких земель (а) и спайдер-диаграмма распределения редких элементов (б) в карбонатитах Турьинской дайковой серии (Рухлов А. С., 1999) (1), Тикшеозерского массива (2), среднем мировом кальцитовом карбонатите (Woolley A. R., Kempe D. R. C., 1989) (3), Котозерского проявления (4).

По содержанию и распределению микроэлементов исследуемые породы, в целом соответствуют среднему мировому кальцитовому карбонатиту (Woolley A. R., Kempe D. R. C., 1989), однако наблюдаются и некоторые отличия (таблица, рис. 1). Состав редких земель показывает исключительную обогащенность ими породы (сумма REE = 1017). Также обращает на себя внимание их сильно фракционированный характер (Ce/Yb = 131), что типично для карбонатитов. На спайдер- диаграмме хорошо проявлена характерная для них отрицательная Hf–Zr аномалия.

Редкоэлементные диаграммы иллюстрируют, распределение соответствующих элементов в карбонатитах ближайших к Котозеру проявлений: Тикшеозерского массива щелочных, ультраосновных пород и карбонатитов и Турьинской мелилитит-нефелинит-карбонатитовой дайковой серии (Рухлов А. С., 1999). На графиках хорошо видно, что и в этом случае распределения редких элементов близки.

Таким образом, по содержанию микро- и петрогенных элементов карбонатные породы, обнаруженные на берегу Верхнего Котозера в Северной Карелии, могут быть охарактеризованы как кальцитовые карбонатиты, соответствующие по основным геохимическим характеристикам карбонатитам Карело-Кольской щелочной провинции. Более достоверным свидетельством магматического происхождения этих карбонатных пород, безусловно, мог бы послужить анализ изотопного состава кислорода, углерода, неодима и стронция.

Авторы благодарят В.В. Иваникова за ценные замечания при обсуждении полученных результатов.

ЛИТЕРАТУРА

Булах А. Г., Иваников В. В. Проблемы минералогии и петрологии карбонатитов, Л., 1984. Bulah A. G., Ivanikov V. V., Orlova M. P. Overview of carbonatite-phoskorite complexes of the Kola Alkaline Province in the context of a Scandinavian North Atlantic Alkaline Province // Phoskorites and carbonatites from mantle to mine: the key of the Kola Alkaline Province / Eds. F. Wall, A. N. Zaitsev. London. 2004.

Степанов В. С. Основной магматизм докембрия Западного Беломорья. Л., 1981.

Woolley A. R., Kempe D. R. C. Carbonatites: nomenclature, average chemical composition, and element distribution // Carbonanites. Evolution and genesis / Ed. by K. Bell. London. 1989.

Рухлов А. С. Дайки и трубки взрыва кандалакшского грабена (Кольская щелочная провинция): модели магматических процессов и эволюции субконтинентальной мантии. Канд. дис. СПб., 1999.