CLUSTERING WORDS AND INTERVAL EXCHANGES

```
A = \{1, \dots, r\} or A = \{a_1 < a_2 < \dots < a_r\}.
```

Primitive word $w = w_1 \cdots w_n$: not a power of another word.

Parikh vector of $w:(n_1,\ldots,n_k)$, $n_i:$ number of occurrences of $a_i:$ in w.

Conjugates: $w_{i,1} \cdots w_{i,n} = w_i \cdots w_n w_1 \cdots w_{i-1}$, $1 \le i \le n$, ordered by ascending lexicographical order.

Burrows-Wheeler transform $B(w) = w_{1,n}w_{2,n}\cdots w_{n,n}$.

```
w = 2314132 \rightarrow 1322314 
1413223 
2231413 
2314132 
314132 
322314 
413223 
B(w) = 4332211.
```

 π --clustering : $B(w) = a_{\pi 1}^{n_{\pi 1}} \cdots a_{\pi r}^{n_{\pi r}}$, for $\pi \neq Id$ permutation on $\{1, \ldots, r\}$. perfectly clustering : π -clustering for $\pi i = r + 1 - i$, $1 \leq i \leq r$.

WHICH ARE THE CLUSTERING WORDS?

Perfectly clustering implies strongly (or circularly) rich (Restivo, Rosone) : w^2 has $|w^2| + 1$ distinct palindromic factors.

Clustering on two letters implies Sturmian.

No converse.

Theorem 1 The following are equivalent:

- 1. w is π -clustering,
- 2. ww occurs in a trajectory of a minimal discrete r-interval exchange with permutation π ,
- 3. ww occurs in a trajectory of a continuous r-interval exchange with permutation π satisfying the i.d.o.c. condition.

Continuous r-interval exchange : defined by a probability vector $(\alpha_1, \alpha_2, \dots, \alpha_r)$, and permutation π by

$$Tx = x + \tau_i \quad x \in \Delta_i,$$

$$\Delta_i = \left[\sum_{j < i} \alpha_j, \sum_{j \le i} \alpha_j \right[, \tau_i = \sum_{\pi^{-1}(j) < \pi^{-1}(i)} \alpha_j - \sum_{j < i} \alpha_j.$$

$$\Delta_1 \qquad \Delta_2 \qquad \Delta_3$$

$$T\Delta_3 \qquad T\Delta_2 \qquad T\Delta_1$$

Discrete r-interval exchange: defined on a set of $n_1 + \cdots + n_r$ points $x_1, \ldots, x_{n_1 + \cdots + n_r}$

$$Tx_k = x_{k+s_i} \quad x_k \in \Delta_i,$$

$$\Delta_i = \{x_k, \sum_{j < i} n_j < k \le \sum_{j \le i} n_j\}, \, s_i = \sum_{\pi^{-1}(j) < \pi^{-1}(i)} n_j - \sum_{j < i} n_j.$$

Example 1122334 → 4332211.

Minimal: no invariant subset (nonempty, closed).

Trajectory: $x_n = i$ if $T^n x$ belongs to Δ_i , $1 \le i \le r$.

I.d.o.c. condition: technical, stronger than minimality, weaker than total irrationality,.

For r = 2 I.d.o.c. interval exchange = irrational rotation. Trajectories = Sturmian infinite words.

ELEMENTS OF PROOF

A clustering word defines a discrete interval exchange.

Lemma 1 If w is π -clustering, the mapping $w_{1,j} \mapsto w_{n,j}$ defines a discrete r-interval exchange transformation with length vector (n_1, n_2, \ldots, n_r) , and permutation π .

```
w = 2314132 \rightarrow B(w) = 4332211.
1 - - - - 4
1 - - - - 3
2 - - - 3
2 - - - 2
3 - - - 2
3 - - - 1
```

Continuous and discrete interval exchanges produce the same finite words.

MINIMALITY AND INVERTIBILITY

Lemma 2 (Crochemore, Désarménien, Perrin or Mantaci, Restivo, Rosone, Sciortino) If w and w' are words such that B(w) = B(w'), then w and w' are cyclically conjugate.

Lemma 3 If the discrete r-interval exchange T with length vector (n_1, n_2, \ldots, n_r) , and permutation π is not minimal, the word $(\pi 1)^{n_{\pi 1}} \ldots (\pi r)^{n_{\pi r}}$ has no primitive pre-image by the Burrows-Wheeler transform.

 $111233444 \rightarrow 444332111$ is not minimal and gives two perfectly clustering words on smaller alphabets, 41 and 323.

WEAKER HYPOTHESES

Non-primitivity. For w not primitive, the Burrows-Wheeler can be defined (the lexicographical order is not strict). Lemma 3: is not valid: 3333222211 = B(1322313223) though the discrete 3-interval exchange is not minimal, A modified Theorem 1 holds.

32221 has no antecedent, primitive or not, by the Burrows-Wheeler transformation.

Two permutations. 223331111 \rightarrow 111133322 is a minimal discrete 3-interval exchange, w = 123131312 is such that ww occurs in trajectories of T but B(w) = 323311112.

BUILDING CLUSTERING WORDS

By discrete interval exchanges.

Minimality. Pak and Redlich \rightarrow for n=3 and $\pi 1=3, \pi 2=2, \pi 3=1$ and length vector (n_1, n_2, n_3) , the interval exchange is minimal iff $(n_1 + n_2)$ and $(n_2 + n_3)$ are coprime.

 $11223333 \rightarrow 333322111$ gives the perfectly clustering word 313131223.

Condition of minimality for $n \geq 4$?

By continuous interval exchanges

Use of the **self-dual induction** or its generalization \rightarrow 13131312222 and 13131222131221312 are perfectly clustering.

 $2^m(3141)^n32$ are perfectly clustering for any m and n.

5252434252516152516161525161 is perfectly clustering.

4123231312412 is π -clustering for $\pi 1 = 4, \pi 2 = 3, \pi 3 = 1, \pi 4 = 2$.

CHARACTERIZATION OF TRAJECTORIES

Theorem 2 A uniformly recurrent infinite word sequence u is a trajectory of an r-interval exchange, defined by permutation π and satisfying the i.d.o.c. condition, if and only if the words of length one occurring in u are $L_1 = \{1, \ldots, r\}$ and it satisfies the following conditions

- if w is any word occurring in u, A(w), resp. D(w), the set of all letters x such that xw, resp. wx, occurs in u, is an interval, resp. an interval for the order of π ,
- if $x \in A(w)$, $y \in A(w)$, $x \le y$ for the order of π , $z \in D(xw)$, $t \in D(yw)$, then $z \le t$,
- if $x \in A(w)$ and $y \in A(w)$ are consecutive in the order of π , $D(xw) \cap D(yw)$ is a singleton.

```
[wa_1] [wa_2] [wa_3] [wa_4] [wa_5] T[x_1w]T[x_2w] T[x_3w] T[x_4w]
```

Do these trajectories contain infinitely many ww? Yes for $\pi i = r + 1 - i$, $1 \le i \le r$. Open in general.