Resolution complexity of perfect matching principles for sparse graphs

Dmitry Itsykson¹, Mikhail Slabodkin², and Dmitry Sokolov¹

September 15, 2014

¹Steklov Institute of Mathematics at St.Petersburg ²St. Petersburg Academic University

Introduction

We construct a family of graphs G_n with the resolution complexity of the perfect matching principle $2^{\Omega(n)}$.

- First exponential lower bound for PMP in the form $2^{\Omega(n)}$, where n is the number of variables.
- Matches upper bound.
- Implies several known lower bounds (PHP $_{n,m}$) and improves some of them (PMP $_{K_n}$).

Resolution proof system

Definition

 $\varphi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ — unsatisfiable CNF.

Resolution proof: $C_{i_1}, C_{i_2}, \ldots, C_{i_l}$

- **1** $C_{i_l} = \bot$.
- **2** Every C_{i_j} is either contained in arphi or is obtained using resolution rule:

$$\frac{x \vee A}{A \vee B}$$

Definition

A family of unsatisfiable formulas F_n is weaker than H_n if for some m for all clauses $C\in H_n,\ C$ is an implication of $\bigwedge_{i=1}^m C_i$, where C_i is a clauses of F_n .

Pigeonhole principle

 PHP_n^m : m pigeons, n holes. Variables $\{p_{i,j}\}\,i=1..m, j=1..n.$ PHP_n^m is a conjunction of statements:

• Every pigeon is contained in at least one hole.

$$\bigwedge_{i} (p_{i,1} \vee p_{i,2} \vee \ldots \vee p_{i,m})$$

Every hole contains at most one pigeon.

$$\bigwedge_{j} (\neg p_{1,j} \vee \neg p_{2,j}) \wedge (\neg p_{1,j} \vee \neg p_{3,j}) \wedge \ldots \wedge (\neg p_{m-1,j} \vee \neg p_{m,j})$$

- Haken, 1985: $2^{\Omega(n)}$ for m = n + 1.
- Razborov, 2001: $2^{\Omega(n^{\frac{1}{3}})}$ for any m>n.

G-PHP $_n^m$: restriction on a particular bipartite graph G.

— Ben-Sasson, Wigderson, 2001: $2^{\Omega(n)}$ for m=O(n) and G is a bipartite constant degree expander.

FPHP^m_n and Perfect matching

 FPHP^m_n : weakening of PHP^m_n ,

- Every pigeon is contained in at most one hole.
- Razborov, 2001: lower bound $2^{\Omega\left(\frac{n}{(\log m)^2}\right)}$, which implies $2^{\Omega\left(n^{1/3}\right)}$ PMP_G : for some graph G(V,E) a formula PMP_G encodes that G has a perfect matching. We assign a binary variable x_e for all $e \in E$. PMP_G is the conjunction of the conditions:
 - For all $v \in V$ at least one edge that incident to v has value 1: $\bigvee_{(v,u) \in E} x_{(v,u)}.$
 - For any pair of edges e_1, e_2 incident to v at most one of them takes value $1, \neg x_{e_1} \lor \neg x_{e_2}$.
 - Razborov, 2004: resolution complexity is at least $2^{\frac{\delta(G)}{\log^2 n}}$, where $\delta(G)$ is the minimal degree and n is the number of vertices.

Results

Theorem 1

 $\exists D$ such that $\forall C \ \forall n \ \forall m \in [n+1,Cn]$ there exists such bipartite G(X,Y,E) such that

- G is explicit with maximum degree $\leq D$, |X| = m, |Y| = n.
- $PMP_{G_{n,m}}$ is unsatisfiable and refutable in at least $2^{\Omega(n)}$.

The number of variables in $\mathsf{PMP}_{G_{n,m}}$ is O(n), therefore the lower bound matches (up to an application of a polynomial) the trivial upper bound $2^{O(n)}$ that holds for every formula with O(n) variables.

Theorem 1 corollaries

- $\mathsf{PMP}_{G_{n,m}}$ is weaker than $G_{m,n}-\mathsf{PHP}_n^m$, PHP_n^m and FPHP_n^m , therefore Theorem 1 implies the same lower bound for $G_{m,n}-\mathsf{PHP}_n^m$, PHP_n^m and FPHP_n^m .
- The resolution complexity of $\mathsf{PMP}_{K_{m,n}}$ is $2^{\Omega(n)}$ where m = O(n), which improves $2^{\Omega(n/\log^2 n)}$ (Razborov, 2004) and matches the upper bound $n2^n$ that follows from the upper bound for PHP_n^{n+1} .
- The lower bound for the resolution complexity of PMP_{K_n} is $2^{\Omega(n)}$, which improves the lower bound $2^{\Omega(n/\log^2 n)}$ (Razborov, 2004).

Boundary expanders, refutation width

Definition

A bipartite graph G with parts X and Y is a (r,c)-boundary expander if $\forall A\subseteq X$, if $|A|\leq r$ then $|\delta(A)|\geq c|A|$, where $\delta(A)$ is the set of all vertices in Y that are connected with exactly one vertex in A;

Definition

Ben-Sasson, Wigderson, 2001:

- Width of the clause w(C) is a number of literals in C.
- Width of the formula $w(\varphi)$ is a maximum width of the clause in it.
- $w(\varphi)$ is refutable in width w if there exists refutation with maximum width of the clauses w.

Theorem (Ben-Sasson, Wigderson)

For any k-CNF unsatisfiable formula φ with n variables the size of resolution proof is at least $2^{\Omega\left(\frac{(w-k)^2}{n}\right)}$, where w is a minimal width of a resolutional proof.

Width-size connection

Theorem 2

Let G be a (r,c)-boundary expander with parts X and Y such that there is a matching in G that covers all vertices from Y. Then the width of all resolution proofs of PMP_G is at least cr/2.

If degrees of all vertices are at most D, then the size of any resolution proof of PHP_G is at least $2^{\Omega\left(\frac{(cr/2-D)^2}{n}\right)}$, where n is the number of edges in G.

Lemma (Itsykson, Sokolov, 2011)

 $\forall~d~\forall~C~$ and $\forall~n~$ and $m\in[n+1,Cn]$ there is an explicit construction of (r,0.4d)-boundary expander G(X,Y,E) with |X|=m, |Y|=n and $r=\Omega(n)$ such that all degrees are bounded by d^2 .

Now Theorem 2 and Lemma imply Theorem 1.

Generalization

- G(V, E) is an undirected graph.
- h is a function $V \to \mathbb{N}$.
- variables $\{x_e\}$ correspond to E.
- $\Psi_G^{(h)}$: $\forall v \in V$ exactly h(v) edges $e_{v,u}$ have value 1.
- PMP $_G$ is a particular case of $\Psi_G^{(h)}$ for $h\equiv 1$.

Theorem 3

 $\forall \ d \in \mathbb{N} \ \forall \ n \ \text{large enough and} \ \forall \ h: V \to \{1,2,\ldots,d\} \text{, where} \ |V| = n,$ there exists such explicit G(V,E), that $\Psi_G^{(h)}$ is unsatisfiable and the refutation size for $\Psi_G^{(h)}$ is at least $2^{\Omega(n)}$.

Theorem 2 corollaries

• Tseitin formulas. Let G(V,E) be an arbitrary and $f:V \to \{0,1\}$; variables x_e of $T_G^{(f)}$ correspond to E.

$$T_G^{(f)} = \bigwedge_{v \in V} \left(\bigoplus_{(v,u) \in E} x_{(v,u)} = f(v) \right)$$

Let h(v)=2-f(v). By Theorem 3 there exists G with n vertices of degree at most D such that the size of any resolution proof of the formula Ψ_G^h is at least $2^{\Omega(n)}$. Every condition of $T_G^{(h)}$ may be derived from a condition of Ψ_G^h in 2^D steps. Thus resolution complexity of $T_G^{(f)}$ is at least $2^{\Omega(n)}$ (— Urquhart, 1987).

• Complete graph. Let $h:V \to \{0,1,\dots,d\}$ be defined on the graph K_n and let formula $\Psi^{(h)}_{K_n}$ be unsatisfiable. By Theorem 3 there exists G with n vertices of bounded degree that the size of any resolution proof of Ψ^h_G is at least $2^{\Omega(n)}$. Formula $\Psi^{(h)}_G$ can be obtained from $\Psi^{(h)}_{K_n}$ by substituting zeroes to some edges, therefore the size of the resolution proof of $\Psi^{(h)}_{K_n}$ is at least $2^{\Omega(n)}$.