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Definitions

A deterministic finite automaton (DFA) is a triple
A = 〈Q,Σ, δ〉. We do not need any initial and final states.

We often write q . w for δ(q, w) and P .w for
δ(P,w) = {δ(q, w) | q ∈ P}.

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a
word w ∈ Σ∗ whose action resets A , that is |Q .w| = 1.

Any word with this property is said to be reset for the DFA A .

Syn(A ) is the language of all reset words for A .

||Syn(A )|| is the length of the shortest reset word for a DFA
A .
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The Černý conjecture

In 1964 Jan Černý found an infinite series of n-state synchronizing
automata whose shortest reset word has length (n− 1)2.
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The Černý conjecture

Any synchronizing automaton with n states has a reset word of
length at most (n− 1)2.
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Ideals and the Černý conjecture

A language I ⊆ Σ∗ is called a two-sided (right or left,
respectively) ideal if I 6= ∅ and I = Σ∗IΣ∗ (I = IΣ∗ or
I = Σ∗I, respectively).

The reset complexity of a two-sided ideal I is the minimal
possible number of states in a synchronizing automaton B

such that Syn(B) = I.

The Černý conjecture (reformulation)

The Černý conjecture holds true iff rc(I) ≥
√

||I||+ 1 for every
two-sided ideal I.
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The Černý conjecture and strongly connected automata

Considered classes of automata:
– automata with a sink state;
– strongly connected automata.
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The Černý conjecture holds true iff it holds true for strongly
connected automata.

Question

Given a two-sided ideal I, does there always exist a strongly
connected synchronizing automaton B with Syn(B) = I?
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Strongly connected synchronizing automata

Theorem (Reis and Rodaro, 2013)

Let I be a two-sided ideal language over non-unary alphabet.
There is a strongly connected DFA B s.t. Syn(B) = I.

Theorem (Gusev, M., Pribavkina, 2014)

If I is a principal two-sided ideal, i.e. I = Σ∗wΣ∗, then there is an
algorithm to construct a strongly connected synchronizing
automaton B with |w|+ 1 states such that Syn(B) = I.

Can we do better?

Theorem 1.

Let I = Σ∗wΣ∗ for some w ∈ Σ∗. In this case rc(I) = |w|+ 1.
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Definitions

The (left) quotient w−1L of a language L ⊆ Σ∗ by a word
w ∈ Σ∗ is the language w−1L = {x|wx ∈ L}.

A DFA A = 〈Q,Σ, δ, q0, {q0}〉 is called trim if each state
q ∈ Q is reachable from q0 and q0 is reachable from each
state q ∈ Q.

L(Σ) is the class of all trim automata A with
L[A ] = w−1Σ∗w for some w ∈ Σ∗.

A DFA B = 〈Q2,Σ, δ2〉 is a homomorphic image of a DFA
A = 〈Q1,Σ, δ1〉 if there is a map ϕ : Q1 → Q2 preserving the
action of letters.

A congruence of a DFA A is an equivalence relation on the
state set of A compatible with the action of the letters.
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Strongly connected and trim automata

Lemma 1.

Let A be a trim DFA such that L[A ] = w−1Σ∗w for some
w ∈ Σ∗. Hence A is a strongly connected synchronizing
automaton with w ∈ Syn(A ).

Theorem 2.

Let B = 〈Q,Σ, δ〉 be a strongly connected synchronizing
automaton. For each reset word w ∈ Syn(B) of minimal length
there is a DFA A ∈ L(Σ) with L[A ] = w−1Σ∗w and

Σ∗wΣ∗ ⊆ Syn(A ) ⊆ Syn(B)

such that B is a homomorphic image of A .
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Lifting property

Strongly connected synchronizing automata are all and only
homomorphic images of trim automata recognizing languages
of the kind w−1Σ∗w.

Congk is the (maybe empty) set of all congruences of an
automaton of index k.

Theorem 3.

Cerny’s conjecture holds if and only if for any B ∈ L(Σ) and
ρ ∈ Congk(B) for all k <

√

‖Syn(B)‖+ 1 we have

‖Syn(B/ρ)‖ < ‖Syn(B)‖
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The minimal automaton recognizing w
−1
Σ

∗
w

The construction is similar to the construction of the minimal DFA
recognizing the language L = Σ∗wΣ∗.

p2p0 p1

b a

a b

a, b

p2p0 p1

b a

a b

b

a

The states are enumerated by prefixes of w: p0 = ε, p1 = a,
p2 = ab.
The initial (and also final) state is w.
pi . a = pj iff pj is the maximal suffix of pia that appears in w as a
prefix.
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Regular languages and synchronizing automata

The minimal automaton Aw recognizing w−1Σ∗w is
synchronizing and L[Aw] ∩ Syn(Aw) 6= ∅, since
w ∈ L[Aw] ∩ Syn(Aw).

Question: how to describe regular languages whose minimal
recognizing automaton is synchronizing?

A partial finite automaton (PFA) is a triple A = 〈Q,Σ, δ〉,
where the action of the transition function may be undefined
on some states.

A partial finite automaton A = 〈Q,Σ, δ〉 is said to be
synchronizing if there is a word w ∈ Σ∗ such that |Q .w| ≤ 1.
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Constants

Let L ⊆ Σ∗ be a regular language. A word w ∈ Σ∗ is a
constant for L if the implication

u1wu2 ∈ L, u3wu4 ∈ L ⇒ u1wu4 ∈ L

holds for all u1, u2, u3, u4 ∈ Σ∗.

C(L) is the set of all constants of a regular language L.

Z(L) = {w|Σ∗wΣ∗ ∩ L = ∅}, Z(L) ⊆ C(L).

Let A = 〈Q,Σ, δ〉 be the minimal automaton recognizing a
regular language L. In this case w ∈ C(L) iff |Q .w| ≤ 1.
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Criterion

Theorem 4.

The minimal automaton A recognizing a language L is
synchronizing and L ∩ Syn(A ) 6= ∅ if and only if the following
properties hold:
(i) C(L) 6= ∅;
(ii) L does not contain right ideals.

The conditions (i) and (ii) can be checked in polynomial of the size
of A time.
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Conclusion

For every two-sided ideal language I over non-unary alphabet
there is some synchronizing DFA B such that Syn(B) = I.

Strongly connected synchronizing automata are all and only
homomorphic images of trim automata recognizing languages
of the kind w−1Σ∗w.

The criterion for the minimal automaton recognizing a regular
language L to be synchronized by some word from L can be
stated in terms of constants of L.
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