УДК: 577.115: 57.085.12: 597.552.512

КОНЦЕНТРАЦИЯ ЛИПИДНЫХ КОМПОНЕНТОВ В МЫШЦАХ РАДУЖНОЙ ФОРЕЛИ *PARASALMO MYKISS* (WALBAUM, 1972) В ЗАВИСИМОСТИ ОТ ПЕРИОДА ХРАНЕНИЯ БИОЛОГИЧЕСКОГО МАТЕРИАЛА ПЕРЕД ЕГО ФИКСАЦИЕЙ

М. А. Назарова¹, О. Б. Васильева², П. О. Рипатти², Н. Н. Немова²

Фиксирование мышц радужной форели для их последующего липидного анализа осуществляли после декапитации рыб в течение 12 часов через определенные промежутки времени. Концентрация большинства изученных компонентов не изменилась, за исключением жирнокислотного состава мышц радужной форели. Показано снижение содержания высоконенасыщенных длинноцепочечных жирных кислот. Наибольшие изменения в уровне изученных показателей установлены после 3 часов хранения биологического материала.

К лючевые слова: липиды, жирные кислоты, хранение биологического материала, радужная форель.

M. A. Nazarova, O. B. Vasilyeva, P. O. Ripatti, N. N. Nemova. THE CONCENTRATION OF LIPID COMPONENTS IN THE MUSCLES OF RAINBOW TROUT *PARASALMO MYKISS* (WALBAUM, 1972) DEPENDING ON THE PRE-FIXATION PERIOD

Fixation of rainbow trout muscles for further lipid analysis was performed after decapitation of the fish within 12 hours at pre-defined time intervals. The concentration of most of the studied components has not changed, except for the fatty acid composition in the muscles of rainbow trout. A reduction in the content of highly unsaturated long-chain fatty acids is shown. The greatest changes in the studied parameters were detected after 3 hours of storage of the biological material.

Keywords: lipids, fatty acids, storage of biological material, rainbow trout.

Введение

Успешное применение методов липидного анализа в эколого-биохимических исследованиях обусловлено широким информационным диапазоном липидных показателей, который дает возможность их использования для оценки адаптивных возможностей организма в

варьирующих условиях внешней среды [Аврова, 1998; Немова, Высоцкая, 2004; Биота..., 2012]. Сбор биологического материала в полевых условиях для последующего биохимического анализа имеет ряд сложностей, связанных прежде всего с достаточно длительным периодом времени, который затрачивается на предварительную пробоподготовку.

Вологодский государственный университет

² Институт биологии Карельского научного центра РАН

При хранении тканей и органов, полученных после декапитации животных, до момента их фиксирования в органическом растворителе в них активируются процессы пероксидации и лизирования липидов, что влияет на конечный результат исследования [Timm-Heinrich et al., 2013]. Одним из способов минимизирования сроков первичной обработки биологического материала является его предварительная заморозка в жидком азоте с последующей фиксацией в органическом растворителе в условиях лаборатории [Christie, 1993]. Однако воздействие низких температур и последующее размораживание материала может снизить достоверность получаемых результатов, поскольку жирнокислотный состав тканей животных крайне чувствителен к изменению температур [Костецкий и др., 2008; Timm-Heinrich et al., 2013]. Учитывая вышесказанное, был проведен эксперимент с целью установления связи между уровнем липидных компонентов в мышцах радужной форели и временем, прошедшим с момента декапитации рыб до фиксации материала.

Материалы и методы

В качестве объекта исследования использовали радужную форель *Parasalmo mykiss* (Walbaum, 1792), культивированную в форелевом хозяйстве, расположенном в северной части Ладожского озера. Выборка рыб (23 особи) была однородна по биологическим и морфометрическим характеристикам. Исследование проводилось на неполовозрелых самках в возрасте 1+.

В ходе работы у радужной форели отделяли белые скелетные мышцы, расположенные возле спинного плавника, и помещали их на хладагент. Часть ткани массой 0,4-0,5 г фиксировали в 5 мл смеси Фолча (хлороформ : метанол (2:1 по объему)) [Folch et al., 1957] в течение 5 минут после декапитации рыб. Оставшуюся часть филе форели помещали на хладагент и оставляли в холодильнике на 12 часов при температуре +5 С. Через 1, 3, 6 и 12 часов после начала эксперимента проводили фиксацию образцов мышц форели аналогичным образом. Работа выполнена с соблюдением международных принципов Хельсинкской декларации о гуманном отношении к животным, принципов гуманности, изложенных в директиве Европейского Сообщества (86/609/ЕС).

Зафиксированные образцы мышц форели до анализа хранились при температуре +5 С в течение 30 дней. Определяли содержание общих липидов; триацилглицеринов; холестерина;

эфиров холестерина; фосфолипидов; фосфатидилхолина; фосфатидилэтаноламина; фосфатидилинозитола; фосфатидилсерина; лизофосфатидилхолина; сфингомиелина; жирных кислот общих липидов: насыщенных, мононенасыщенных и полиненасыщенных жирных кислот.

Выделение общих липидов из зафиксированного материала проводили по методу Фолча [Folch et al., 1957]. Общие липиды разделяли методом тонкослойной хроматографии восходящим способом в системе растворителей: петролейный эфир: диэтиловый эфир: уксусная кислота (в соотношении 90:10:1 по объему) при комнатной температуре. Концентрацию липидов определяли стандартными спектрофотометрическими методами [Walsh et al., 1965; Engelbrecht et al., 1974; Сидоров и др., 1981]. Анализ отдельных фракций фосфолипидов был проведен с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ) в изократическом режиме на жидкостном хроматографе «Стайер» («Аквилон», Россия) [Arduini et al., 1996].

Для анализа жирных кислот общие липиды подвергались прямому метилированию [Цыганов, 1971]. Полученные метиловые эфиры ЖК разделяли на хроматографе «Кристалл 5000» («Хромотек», Россия). Идентификация и количественный анализ метиловых эфиров жирных кислот проводился путем расчета эквивалента длины цепи и сравнением его с табличными данными [Jamieson, 1975], а также с использованием стандартных растворов метиловых эфиров жирных кислот («Supelco») при помощи компьютерной программы по обработке хроматограмм «Хроматэк Аналитик». Статистическую обработку данных проводили общепринятыми статистическими методами [Елисеева, 2007; Коросов, Горбач, 2010].

Лабораторные исследования выполнены с использованием приборной базы центра коллективного пользования научным оборудованием ИБ КарНЦ РАН.

Результаты и обсуждения

В результате проведенного анализа липидного состава мышц радужной форели установлено, что концентрация общих липидов (ОЛ) в течение всего периода эксперимента была примерно одинакова (табл. 1). Содержание данных компонентов составляло 16,8–17,5 % от сухой массы и соответствовало уровню ОЛ, установленному для рыб данного возраста и культивированных в аналогичных условиях, что было показано в ранее проведенных исследованиях [Назарова и др., 2010, 2011]. Согласно

Таблица 1. Содержание общих липидов, фосфолипидов (в % сухой массы) в мышцах радужной форели

	Периоды фиксирования материала после декапитации рыб					
	5 минут	1 час	3 часа	6 часов	12 часов	
Общие липиды	17,44	17,27	17,16	16,99	16,93	
Фосфолипиды	5,63	5,57	5,46	5,40	5,41	
Триацилглицерины	6,58	6,49	6,44	6,47	6,44	
Эфиры холестерина	3,33	3,35	3,32	3,27	3,28	
Холестерин	1,87	1,86	1,84	1,83	1,81	
Фосфатидилинозитол	0,34	0,33	0,31	0,30	0,30	
Фосфатидилсерин	0,11	0,11	0,11	0,09 ^{a,b}	0,07 ^{a,b}	
Фосфатидилэтаноламин	1,41	1,40	1,40	1,41	1,40	
Фосфатидилхолин	3,65	3,61	3,54	3,51 ^b	3,49 ^b	
Лизофосфатидилхолин	0,055	0,057	0,059	0,072 ^b	0,076 ^b	
Сфингомиелин	0,050	0,049	0,050	0,048	0,049	
Неидентифицированные фосфолипиды	0,011	0,011	0,011	0,013 ^{a,b}	0,016 ^{a,b}	

Примечание. а – различия достоверны при сравнении данных с предыдущей точкой, при р \leq 0,05; b – различия достоверны при сравнении данных с результатами, полученными при фиксации материала в течение 5 минут после декапитации рыб, при р \leq 0,05.

литературным источникам, содержание общих липидов в мышцах рыб при хранении на льду не изменяется в течение более чем двух недель [Choubert, Baccaunaud, 2006; Widjaja et al., 2009]. Концентрация запасных липидов (триацилглицеринов и эфиров холестерина) в процессе хранения биологического материала была одинаковая ($p \le 0.05$) (см. табл. 1), что имеет практическое значение при реализации радужной форели, поскольку от уровня данных липидных компонентов в филе зависит калорийность продукта. Содержание структурных компонентов - холестерина (ХС) и фосфолипидов (ФЛ) – влияет не только на органолептические свойства продукции форелеводов, но и на степень ее полезности [Tocher et al., 2008]. Данные соединения служат основными компонентами биомембран клеток, а также выполняют регуляторную, сигнальную, энергетическую и другие функции [Крепс, 1981; Tocher et al., 2008]. В ходе эксперимента обнаружена тенденция к снижению содержания ХС и ФЛ при хранении биологического материала, однако значимых различий не установлено. Среди индивидуальных фосфолипидов концентрация фосфатидилэтаноламина, фосфатидилинозитола и сфингомиелина в течение всего периода исследования была одинакова. Содержание других индивидуальных фосфолипидов в мышцах в процессе исследования менялось в разной степени. Установлено уменьшение концентрации фосфатидилхолина (ФХ) с течением времени. Снижение содержания фосфатидилсерина (ФС), по сравнению с ФХ, было менее выражено; достоверные различия в его уровне показаны через 3 часа после декапитации рыб. При дальнейшем хранении биологического материала изменение уровня ФС было более значительным. Одновременно со снижением содержания ФХ и ФС увеличивалась концентрация лизофосфатидилхолина и неидентифици-

рованных фосфолипидов, к которым относятся лизированные продукты минорных фосфолипидов, в том числе и лизофосфатидилсерин (см. табл. 1).

Наибольшим изменениям при хранении биологического материала подвергся жирнокислотный состав общих липидов. Абсолютное содержание изученных жирных кислот снижалось в течение всего периода исследования, при этом концентрация общих липидов оставалась прежней (см. табл. 1, 2). Уменьшение количества исследованных жирных кислот, вероятно, связано с их частичным окислением и накоплением жирных кислот с более короткой углеродной цепью. Таким образом, увеличивалась концентрация не идентифицированных в данной работе жирных кислот, к которым относятся кислоты, содержащие в своем составе четырнадцати углеродных атомов. Однако интенсивность снижения уровня жирных кислот была различна и зависела от их структуры. Показано уменьшение процентного содержания ряда жирных кислот, в основном относящихся к семейству оЗ полиненасыщенных жирных кислот (см. табл. 2). Наиболее значительное снижение установлено в содержании жирных кислот с большим количеством двойных связей, таких как докозагексаеновая 22:603, докозапентаеновая 22:503, эйкозапентаеновая 20:503 кислоты. Известно, что именно наличие ненасыщенных связей у жирных кислот способствует пероксидации липидов и образованию реакционно-активных радикалов [Ленинджер, 1985; Ким, 2002]. Концентрация насыщенных жирных кислот и ненасыщенных жирных кислот с меньшим количеством двойных связей (моноеновых) снижалась менее интенсивно, поэтому их доля от суммы жирных кислот не изменялась или незначительно возрастала в течение всего периода исследования (см. табл. 2).

Таблица 2. Содержание жирных кислот общих липидов (в % от суммы жирных кислот и в мг/г липида) в мышцах радужной форели

	Периоды фиксирования материала после декапитации рыб						
	5 минут	1 час	3 часа	6 часов	12 часов		
14:00	<u>3,01</u> *	<u>2,95</u>	<u>2,98</u>	<u>2,90</u>	2,90		
	21,46	13,95ª	11,80 ^{a,b}	11,54 ^b	11,29⁵		
16:00	<u>14,77</u>	<u>15,05</u>	<u>14,02</u>	<u>14,41</u>	14,20		
	105,19	79,28 ^a	64,21 ^{a,b}	63,14 ^b	59,48 ^{a,b}		
Сумма насыщенных ЖК	<u>22,47</u>	<u>22,76</u>	<u>21,99</u>	22,31	22,28		
	160,08	119,84ª	100,74 ^b	96,17a ^{,b}	93,32 ^{a,b}		
16:1ω7	<u>4,61</u>	3,93°	4,10 ^b	4,09 ^b	4,27 ^b		
	32,86	20,72°	18,80 ^b	18,32 ^b	17,88 ^b		
18:1ω9	<u>23,94</u>	<u>25,51</u>	28,44 ^{a,b}	28,71 ^b	29,03 ^b		
	170,54	134,35°	130,26 ^b	128,61 ^b	121,57⁵		
18:1ω7	<u>3,25</u>	<u>2,99</u>	2,10 ^{a,b}	2,21 ^b	2,09 ^b		
	23,16	15,74°	9,62 ^{a,b}	9,12 ^{a,b}	8,73 ^{a,b}		
20:1ω9	<u>3,43</u>	<u>3,20</u>	<u>2,97⁵</u>	<u>3.13</u>	3.22		
	24,46	16,88ª	13,62 ^{a,b}	13,58 ^b	13,50⁵		
22:1@11	<u>2,96</u>	<u>2.59</u>	<u>2,47</u>	<u>2,52</u>	<u>2,46</u>		
	21,12	13,63ª	11,31 ^{a,b}	10,97 ^b	10,32 ^b		
Сумма моноеновых ЖК	<u>40,71</u>	<u>40.80</u>	<u>42,56⁵</u>	43.01 ^b	<u>43,55⁵</u>		
	289,99	214,86°	194,93 ^{a,b}	188,72 ^{a,b}	182,40 ^b		
16:3ω6	0,20	0,22	<u>0,26^b</u>	0,25	0,25		
	1,46	1,21ª	1,16⁵	1,11 ^b	1,04 ^b		
18:2ω6	<u>6,91</u>	<u>6.95</u>	<u>7,00</u>	<u>7,11</u>	<u>7,18</u>		
	49,26	36,58ª	32,08 ^{a,b}	31,54 ^b	30,08 ^b		
20:406	<u>0.55</u>	<u>0.59</u>	<u>0.55</u>	<u>0.55</u>	<u>0.57</u>		
	3,93	3,08°	2,52 ^{a,b}	2,43 ^b	2,37⁵		
ω6 ПНЖК	9.03	<u>9,15</u>	9,22	<u>9,34</u>	9,53 ^b		
	64,30	48,18°	42,23 ^{a,b}	41,23 ^b	39,90 ^b		
ω9 ПНЖК	<u>0,23</u>	0.24	<u>0,26</u>	<u>0,26</u>	0,27		
	1,66	1,46	1,28⁵	1,18 ^b	1,13⁵		
ω4 ПНЖК	<u>0,53</u>	0,79°	1,11 ^{a,b}	<u>1,07^b</u>	<u>0.98⁵</u>		
	5,08	4,97	4,88	4,66	4,12 ^b		
18:3ω3	<u>2,10</u>	<u>2,01</u>	<u>1,90</u>	<u>1,83⁵</u>	<u>1,90</u>		
	14,93	10,60°	8,71 ^{a,b}	8,54 ^b	8,22 ^b		
20:5ω3	<u>4,63</u>	<u>4,48</u>	<u>4,46</u>	<u>4,34</u>	<u>4,15</u> ^b		
	32,99	23,61ª	20,42 ^{a,b}	18,97⁵	17,37 ^{a,b}		
22:5ω3	<u>1,36</u>	<u>1,33</u>	<u>1,30</u>	<u>1,28⁵</u>	<u>1,27⁵</u>		
	9,66	7,33°	6,98 ^b	6,52 ^b	5,32 ^{a,b}		
22:6ω3	<u>17,16</u>	<u>16,95</u>	15,46 ^{a,b}	14,99 ^b	14,47 ^b		
	122,26	89,24ª	70,80 ^{a,b}	65,13 ^{a,b}	60,60 ^{a,b}		
ω3 ПНЖК	27,03	26,32	24,86 ^{a,b}	24,00 ^b	23,38 ^b		
	192,54	138,59°	113,89 ^{a,b}	100,24 ^b	97,90 ^b		
Сумма ПНЖК	36,82	36,46	<u>35,45</u>	34,92 ^b	34,16 ^b		
	262,28	192,01 ^a	162,39 ^{a,b}	153,67 ^{a,b}	143,06 ^{a,b}		

Примечание. * – в числителе приведены данные в % от суммы жирных кислот, в знаменателе – в мг/г липида; а – различия достоверны при сравнении данных с предыдущей точкой, при $p \le 0.05$; b – различия достоверны при сравнении данных с результатами, полученными при фиксации материала в течение 5 минут после декапитации рыб, при $p \le 0.05$.

Таким образом, фиксацию биологического материала в полевых условиях проведения работ необходимо осуществлять за минимально короткий период времени после декапитации рыб, с целью получения наиболее достоверных результатов. Если период хранения тканей и органов до фиксирования проб составляет более трех часов, то при интерпретации результатов содержания жирных кислот в тканях рыб следует использовать их относительные единицы. Уровень других липидных показателей менялся незначительно.

Работа выполнена при финансовой поддержке РФФИ, проект 13-04-90714-мол-рфнр, и программы Президента РФ для господдержки ведущих научных школ РФ НШ – 1642.2012.4.

Литература

Аврова Н. Ф. Биохимические механизмы акклимации к изменяющимся условиям среды у позвоночных: роль липидов // Ж. эвол. биохим. и физиол. 1998. Т. 34, № 3. С. 170–180.

Биота северных озер в условиях антропогенного воздействия / Ред. Н. Н. Немова, Н. В. Ильмаст, Е. П. Иешко, О. В. Мещерякова. Петрозаводск: КарНЦ РАН, 2012. 230 с.

Елисеева И. И. Статистика. М.: Высшее образование, 2007. 566 с.

Ким А. М. Органическая химия: учеб. пособие. 3-е изд., испр. и доп. Новосибирск: Сиб. унив. издво, 2002. 971 с.

Коросов А. В., Горбач В. В. Компьютерная обработка биологических данных: метод. пособие. Петрозаводск: Изд-во ПетрГУ, 2010. 84 с.

Костецкий Э. Я., Борода А. В., Одинцова Н. А. Изменения липидного состава эмбриональных клеток мидий *Mytilus trossulus* в процессе криоконсервации // Биофизика. 2008. Т. 53, вып. 4. С. 658–665.

Крепс Е. М. Липиды клеточных мембран. Л.: Нау-ка, 1981. 339 с.

Ленинджер А. Основы биохимии в 3-х т. Т. 1. / Пер. с англ. М.: Мир. 1985. 367 с.

Назарова М. А., Васильева О. Б., Немова Н. Н. Сравнительный анализ общих липидов состава корма и тканей радужной форели Oncorhynchus mykiss W. // Воспроизводство естественных популяций ценных видов рыб: тезисы докл. междунар. конф. СПб.: Нестор-История, 2010. С. 136–138.

Назарова М. А., Васильева О. Б., Руоколайнен Т. Р., Шатуновский М. И., Немова Н. Н. Влияние некоторых факторов на липидные показатели тканей радужной форели (Parasalmo mikiss Walb.) // Экологические проблемы пресноводных рыбохозяйственных водоемов России. Всероссийская конференция с международным участием, Казань, 18–20 октября 2011 г. СПб: ГосНИОРХ, 2011. С. 265–270.

Немова Н. Н., Высоцкая Р. У. Биохимическая индикация состояния рыб. М.: Наука, 2004. 215 с.

Сидоров В. С. Экологическая биохимия рыб. Липиды. Л.: Наука, 1983. 240 с.

Сидоров В. С., Лизенко Е. И., Болгова О. М. Методы выделения, тонкослойная и газожидкостная хроматография липидов рыб // Типовые методики исследования продуктивных видов рыб в пределах их ареалов. 1981. Ч. IV. С. 58–69.

Цыганов Э. П. Метод прямого метилирования липидов после ТСХ без элюирования с силикагеля // Лабораторное дело. 1971. № 8. С. 490–493.

СВЕДЕНИЯ ОБ АВТОРАХ:

Назарова Марина Александровна

старший преподаватель кафедры химии Вологодский государственный университет ул. Ленина, 15, Вологда, Россия, 160035 эл. адрес: marinamarina35@yandex.ru тел.: (8172) 725201

Васильева Ольга Борисовна

старший научный сотрудник лаб. экологической биохимии, к. б. н.

Институт биологии Карельского научного центра РАН ул. Пушкинская, 11, Петрозаводск, Карелия, Россия, 185910

эл. адрес: vasil@krc.karelia.ru

тел.: (8142) 769810

Рипатти Паули Онниевич

ведущий научный сотрудник лаб. экологической биохимии, к б н

Институт биологии Карельского научного центра РАН ул. Пушкинская, 11, Петрозаводск, Карелия, Россия, 185910

тел.: (8142) 769810

Arduini A., Peschechera A., Dottori S. High performance liquid chromatography of long-chain acylcarnitine and phospholipids in fatty acid turnover studies // J. Lipid Res. 1996. Vol. 37, N 2. P. 684–689.

Choubert G., Baccaunaud M. Colour changes of fillets of rainbow trout (Oncorhynchus mykiss W.) fed astaxanthin or canthaxanthin during storage under controlled or modified atmosphere // LWT – Food Science and Technology. 2006. Vol. 39, N 10. P. 1203–1213.

Christie W. W. Preparation of lipid extracts from tissues // Advances in Lipid Methodology. 1993. P. 195–213.

Engelbrecht F. M., Mari F., Anderson J. T. Cholesterol determination in serum. A rapid direction method // Med. J. 1974. Vol. 48, N 7. P. 250–356.

Folch J., Lees M., Stanley G. H. S. A simple method for the isolation and purification of total lipides from animal tissues // J. Biol. Chem. 1957. Vol. 226. P. 497–509.

Jamieson G. R. GLS-identification techniques for longchain unsaturated fatty acids / G. R. Jamieson // J. Chromatogr. Sci. 1975. Vol. 13, N 10. P. 491–497.

Timm-Heinrich M., Eymard S., Baron C. P., Nielsen H. H., Jacobsen C. Oxidative changes during ice storage of rainbow trout (*Oncorhynchus mykiss*) fed different ratios of marine and vegetable feed ingredients // Food Chemistry. 2013. Vol. 136, N 3–4. P. 1220–1230.

Tocher D. R., Bendiksen E. A., Campbell P. J., Bell J. G. The role of phospholipids in nutrition and metabolism of teleost fish // Aquaculture, 2008. Vol. 280. P. 21–34.

Walsh D. E., Banasik O. J., Gilles K. A. Thin-layer chromatographic separation and colorimetric analysis of barley or malt lipid classis and their fatty acids // J. Chromat. 1965. Vol. 17, N 2. P. 278–287.

Widjaja W. P., Abdulamir A. S., Abu Bakar F. B., Saari N. B., Ishak Z. B., Hamid A. A. Lipid quality deteroriation of bagridae catfish (Mystus nemurus) during storage // Research Journal of Biological Sciences. 2009. Vol. 4, N 4. P. 525–530.

Nazarova, Marina

Vologda State University, 15 Lenina St., 160035 Vologda, Russia e-mail: marinamarina35@yandex.ru tel.: (8172) 725201

Vasilyeva, Olga

Institute of Biology, Karelian Research Centre, Russian Academy of Sciences 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia e-mail: vasil@krc.karelia.ru tel.: (8142) 769810

Ripatti, Pauli

Institute of Biology, Karelian Research Centre, Russian Academy of Sciences 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia

tel.: (8142) 769810

Немова Нина Николаевна

директор, главный научный сотрудник лаб. экологической биохимии, чл.-корр. РАН, д. б. н., проф. Институт биологии Карельского научного центра РАН ул. Пушкинская, 11, Петрозаводск, Республика Карелия, Россия, 185910

эл. почта: nemova@krc.karelia.ru тел.: (8142) 769810, 783615

Nemova, Nina

Institute of Biology, Karelian Research Centre, Russian Academy of Sciences 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia e-mail: nemova@krc.karelia.ru

e-mail: nemova@krc.karelia.ri tel.: (8142) 769810, 783615