Как рассказал Виктор Миронов, одним из наиболее известных проявлений солнечной активности являются солнечные пятна. Так называют «темные» и «холодные» участки поверхности Солнца, где сильнейшие магнитные поля блокируют конвекцию раскаленной плазмы. Солнечные пятна обычно окружены факелами – обширными яркими областями, излучающими высокие уровни радиации. Поэтому увеличение числа солнечных пятен совпадает с повышением солнечной радиации. Наибольшее увеличение происходит в коротковолновой части спектра, в том числе и на проходящем сквозь озоновый слой ультрафиолете В (UV-B). Растения улавливают его с помощью особого фоторецептора UVR8. Повышение уровней UV-B служит сигналом для замедления, а понижение – для ускорения роста побегов.
– Наши данные показали, что солнечные пятна слабо, но значимо замедляют рост сфагнума в суточном масштабе. При этом обнаружилось, что наиболее сильный эффект оказывают экстремальные всплески числа солнечных пятен. Это согласуется с гипотезой, что первичный механизм действия числа солнечных пятен связан с колебаниями UV-B, – рассказал Виктор Миронов.
В то же время, по его словам, существует парадокс: в годичном масштабе солнечная активность может действовать ровно наоборот – увеличивать годичный прирост растений.
– Дело в том, что высокие уровни солнечной активности в длительной перспективе слегка нагревают атмосферу. Поскольку температура – один из ключевых факторов для растений, в некоторых случаях ее ускоряющее влияние на рост может перевешивать замедляющее влияние UV-B. Таким образом, снижение или повышение годичного прироста растений является результатом баланса между противоположными биологическими эффектами UV-B и температуры на конкретном участке, – пояснил ученый.

Согласно исследованию, замедляющий эффект солнечных пятен серьезно отличается в разные стадии 11-летнего солнечного цикла. Так, в годы с высокой солнечной активностью Виктор Миронов наблюдал наиболее сильную связь роста сфагнума с числом солнечных пятен. По мере снижения солнечной активности она постепенно ослабевала, а при слишком низкой активности – исчезала. Эта закономерность может оказаться важной для понимания участия озонового слоя Земли в блокировании колебаний солнечной активности.
– Полученные факты в совокупности являются косвенным индикатором защитных свойств озонового слоя по отношению к колебаниям UV-B, создаваемым солнечной активностью. Они показывают, что при экстремальной солнечной активности, а также на пике 11-летнего солнечного цикла озоновый слой не полностью блокирует всплески излучения Солнца. Это ведет к тому, что при высокой солнечной активности мы получаем более высокие дозы опасного излучения. Это согласуется с недавними выводами зарубежных коллег о снижении продолжительности жизни у людей, родившихся в годы с высокой солнечной активностью и повышении заболеваемостью раком кожи в эти годы, – отметил автор исследования.
В предыдущей работе биолог с помощью данных по облачности показал, что лунный цикл действует на растения за счет вариаций отражаемого луной света. Ранее ученый разработал и запатентовал методику использования растений для выявления наиболее коротких длин волн солнечного UV-B, излучение которых трудно регистрируется физическими приборами.
Как происходит измерение роста мха Sphagnum riparium – в новом видео на YouTube-канале КарНЦ РАН.